Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0
=> x = 0
c, => 4^x = 4^10.(4-3) = 4^10
=> x=10
d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9
=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)
=> 2.3^x-1 . 27 = 2.3^6 . 27
=> 3^x-1 = 3^6
=> x-1 = 6
=> x = 7
e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)
=> 2^x. 5/2 = 2^11. 5/2
=> 2^x = 2^11
=> x = 11
Tk mk nha
a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)
=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)
b: x+y+1=0
=>x+y=-1
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)
=1
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
a, => (-2)^x = -(2^2)^6.(2^3)^15
=> (-2)^x = -2^12.2^15 = -2^27 = (-2)^27
=> x = 27
b, Vì |x+5| và (3y-4)^2012 đều >= 0
=> |x+5|+(3y-4)^2012 >= 0
Dấu "=" xảy ra <=> x+5=0 và 3y-4=0 <=> x=-5 và y=4/3
c, => (2x-1)^2+|2y-x| = 12-5.2^2+8 = 0
Vì (2x-1)^2 và |2y-x| đều >= 0
=> (2x-1)^2+|2y-x| >= 0
Dấu "=" xảy ra <=> 2x-1=0 và 2y-x=0 <=> x=1/2 và y=1/4
Tk mk nha