Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left|9+x\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}9+x=2x\\9x+x=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9=x\\9=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
Vậy...
Trường hợp 2 chưa chắc chắn lắm!!!
a) \(\left|9+x\right|=2x\)
Xét trường hợp 1:
\(9+x=2x\)
\(\Leftrightarrow9+x-2x=0\)
\(\Leftrightarrow9-x=0\)
\(\Leftrightarrow x=9\)
Xét trường hợp 2:
\(9+x=-2x\)
\(\Leftrightarrow9+x-\left(-2x\right)=0\)
\(\Leftrightarrow9+x+2x=0\)
\(\Leftrightarrow9+3x=0\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-9:3\)
\(\Leftrightarrow x=-3\)
Vậy x=9 hoặc x=-3
b) \(\left|x+6\right|-9=2x\)
\(\Leftrightarrow\left|x+6\right|=2x+9\)
Xét trường hợp 1:
\(x+6=2x+9\)
\(\Leftrightarrow x+6-\left(2x+9\right)=0\)
\(\Leftrightarrow x+6-2x-9=0\)
\(\Leftrightarrow-3-x=0\)
\(\Leftrightarrow x=-3\)
Xét trường hợp 2:
\(x+6=-\left(2x+9\right)\)
\(\Leftrightarrow x+6-\left[-\left(2x+9\right)\right]=0\)
\(\Leftrightarrow x+6+\left(2x+9\right)=0\)
\(\Leftrightarrow x+6+2x+9=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-15:3\)
\(\Leftrightarrow x=-5\)
Vậy x=-3 hoặc x=-5
a: \(f\left(x\right)=2x^2-7x+9\)
=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)
Đặt f'(x)=0
=>\(4x-7=0\)
=>\(x=\dfrac{7}{4}\)
\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)
\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)
\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)
Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)
nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)
b: \(f\left(x\right)=x^2+5x+3\)
=>\(f'\left(x\right)=2x+5\)
f'(x)=0
=>2x+5=0
=>2x=-5
=>\(x=-\dfrac{5}{2}\)
\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)
\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)
\(f\left(6\right)=6^2+5\cdot6+3=69\)
Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)
d) \(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)
\(\Leftrightarrow0< x< 1\)
a) \(P\left(x\right):"x^2-5x+4=0"\)
\(x^2-5x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng
b) \(P\left(x\right):"x^2-5x+6=0"\)
\(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng
c) \(P\left(x\right):"x^2-3x=0"\)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng
d) \(P\left(x\right):"\sqrt[]{x}>x"\)
\(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)
\(\Leftrightarrow0< x< 1\)
Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng
e) \(P\left(x\right):"2x+3< 7"\)
\(2x+3< 7\)
\(\Leftrightarrow2x< 4\)
\(\Leftrightarrow x< 2\)
Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng
f) \(P\left(x\right):"x^2+x+1>0"\)
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng
1. Ta có : 3x+12=0 <=> x= -4
bảng xét dấu:
x | -∞ -4 + ∞ |
3x+12 |
- 0 + |
f(x) >0 ∀ x ∈ (-4;+∞)
f(x) <0 ∀ x∈ (-∞;-4)
2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)
Bảng xét dấu:
x | -∞ 9/5 +∞ |
-5x+9 | + 0 - |
f(x) >0 ∀ x ∈ (-∞; 9/5)
f(x) <0 ∀ x ∈(9/5; +∞)
3. Ta có : -3x-9=0 <=> x= -3
x | -∞ -3 +∞ |
-3x-9 | + 0 - |
f(x) >0 ∀ x∈ (-∞; -3)
f(x) <0 ∀x∈ ( -3; +∞ )
4. Ta có : x (2x+4)=0
+, x=0
+, 2x+4=0 <=> x= -2
x | -∞ -2 0 +∞ |
x | - \(|\) - 0 + |
2x+4 | - 0 + \(|\) + |
f (x) | + 0 - 0 + |
f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)
f(x) <0 ∀ x ∈ (-2;0)
5. Ta có: (x-2)(-x+4)=0
+, x-2=0 <=> x=2
+, -x+4=0 <=> x= 4
x | -∞ 2 4 +∞ |
x-2 | - 0 + \(|\) + |
-x+4 | + \(|\) + 0 - |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x ∈ (2;4)
f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)
6. Ta có : (-4x+3)(x-6)=0
+, -4x+3=0 <=>x= \(\frac{3}{4}\)
+, x-6 =0 <=> x=6
x | -∞ 3/4 6 +∞ |
-4x+3 | + 0 - \(|\) - |
x-6 | - \(|\) - 0 + |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x∈ (3/4;6)
f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)
(x + 6)(x + 3)(x + 9)(x + 2) = 5x2
<=> (x2 + 9x + 18).(x2 + 11x + 18) = 5x2
<=> (x2 + 10x + 18 - x)(x2 + 10x + 18 + x) = 5x2
<=> (x2 + 10x + 18)2 - x2 = 5x2
<=> (x2 + 10x + 18)2 = 6x2
<=> \(\left[{}\begin{matrix}x^2+10x+18=\sqrt{6}x\\x^2+10x+18=-\sqrt{6}x\end{matrix}\right.\)
Với \(x^2+10x+18=\sqrt{6}x\Leftrightarrow x^2+\left(10-\sqrt{6}\right)x+18=0\)
\(\Delta=\left(10-\sqrt{6}\right)^2-72=34-20\sqrt{6}< 0\)
=> Phương trình vô nghiệm
Với \(x^2+10x+18=-\sqrt{6}x\Leftrightarrow x^2+\left(10+\sqrt{6}\right)x+18=0\)
\(\Delta=\left(10+\sqrt{6}\right)^2-72=34+20\sqrt{6}\) > 0
Phương trình có 2 nghiệm \(x=\dfrac{-10-\sqrt{6}\pm\sqrt{34+20\sqrt{6}}}{2}\)
\(\left(x+6\right)\left(x+3\right)\left(x+9\right)\left(x+2\right)=5x^2\)
\(\Leftrightarrow\left(x^2+3x+6x+18\right)\left(x^2+2x+9x+18\right)=5x^2\)
\(\Leftrightarrow\left(x^2+9x+18\right)\left(x^2+11x+18\right)=5x^2\)
\(\Leftrightarrow x^4+11x^3+18x^2+9x^3+99x^2+162x+18x^2+198x+324=5x^2\)
\(\Leftrightarrow x^4+20x^3+135x^2+360x+324=5x^2\)
\(\Leftrightarrow x^4+20x^3+130x^2+360x+324=0\)
\(\Leftrightarrow x\in\varnothing\)