Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x-1}{x+5}=\frac{6}{7}\Rightarrow7\left(x-1\right)=6\left(x+5\right)\Rightarrow7x-7=6x+30\Rightarrow x=37\)
b/ \(\frac{x-2}{x-1}=\frac{x+4}{x+7}\Rightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\Rightarrow x^2+5x-14=x^2+3x-4\)
\(\Rightarrow2x=10\Rightarrow x=5\)
Vì x chia 8;10;15;20 đều dư 3
=> x-3 chia hết cho 8;10;15;20
=> x-3\(\in\) BC(8;10;15;20) = {0;240;480;...}
=> x \(\in\){3;243;483;...}
Mà x từ trong khoảng 230-300 => x = 243
a) \(3^{x+1}=9^x\)
\(\Rightarrow3^{x+1}=\left(3.3\right)^x\)
\(\Rightarrow3^{x+1}=3^{3x}\)
\(\Rightarrow x+1=3x\)
\(\Rightarrow3x-x=2x=1\)
\(\Rightarrow x=1\)
b) \(2^{3x+2}=4^{x+5}\)
\(2^{3x+2}=\left(2.2\right)^{x+5}\)
\(\Rightarrow2^{3x+2}=2^{2\left(x+5\right)}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\Rightarrow3x+2=2x+2+8\)
\(\Rightarrow3x=2x+8\Rightarrow3x-2x=8\)
\(\Rightarrow1x=8\Rightarrow x=8\)
\(a,Q\left(\dfrac{1}{2}\right)=-3.\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-3.\dfrac{1}{4}+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{3}{4}+\left(-\dfrac{3}{2}\right)\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{9}{4}\)
\(b,P\left(1\right)=-3.1^2+2.1+1\)
\(P\left(1\right)=-3.1+2+1\)
\(P\left(1\right)=-3+2+1\)
\(P\left(1\right)=0\)
Vậy x = 1 là nghiệm của đa thức P(x)
\(c,H\left(x\right)=\left(-3x^2+2x+1\right)-\left(-3x^2+x-2\right)\)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
\(\Leftrightarrow\left[\left(x+3\right)^2\right]^2+\left[\left(x+5\right)^2\right]^2=4\)
\(\Leftrightarrow\left[x\left(x+3\right)+3\left(x+3\right)\right]^2+\left[x\left(x+5\right)+5\left(x+5\right)\right]^2=4\)
\(\Leftrightarrow\left(x^2+6x+9\right)^2+\left(x^2+10x+25\right)^2=2\) (*)
Ta có: \(\left(x^2+6x+9\right)^2=x^2\left(x^2+6x+9\right)+6x\left(x^2+6x+9\right)+9\left(x^2+6x+9\right)\)
\(=\left(x^4+6x^3+9x^2\right)+\left(6x^3+36x^2+54x\right)+\left(9x^2+54x+81\right)\)
\(=x^4+12x^3+54x^2+108x+81\left(1\right)\)
\(\left(x^2+10x+25\right)^2=x^2\left(x^2+10x+25\right)+10x\left(x^2+10x+25\right)+25\left(x^2+10x+25\right)\)
\(=\left(x^4+10x^3+25x^2\right)+\left(10x^3+100x^2+250x\right)+\left(25x^2+250x+625\right)\)
\(=x^4+20x^3+150x^2+500x+625\left(2\right)\)
Thay (1) và (2) vào (*) ta có:
\(\left(x^4+12x^3+54x^2+108x+81\right)+\left(x^4+20x^3+50x^2+500x+625\right)=2\)
\(\Rightarrow2x^4+32x^3+104x^2+608x+706=2\)\(\Rightarrow2x^4+32x^3+104x^2+608x+704=0\)
......(để suy nghĩ tiếp đã)
bạn sài ròi
gọi x+3 là a, x+5 là a+2
ta có: a^4+(a+2)^4=2
a^4+a^2+4a+4=2
a^2(a^2+1)+4a+2=0
+, a^2(a^2+1)=0
- a=0
- a^2+1=0 ,a=1 và -1
+, 4a+2=0
suy ra a=-1:2
thế này mới đúng ,nhớ đúng nha