K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+36=0\)

\(\Rightarrow\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+36=0\)

\(\Leftrightarrow\left(x^2-8x-x+8\right)\left(x^2-4x-5x+20\right)+36=0\)

\(\Rightarrow\left(x^2-9x+8\right)\left(x^2-9x+20\right)+36=0\)

\(\Rightarrow\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)+36=0\)

\(\Rightarrow\left(x^2-9x+14\right)^2-36+36=0\)

\(\Rightarrow x^2-9x+14=0\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)

6 tháng 12 2018

(-5)+(-11)

6 tháng 12 2018

\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+36=0\)

\(\left[\left(x-1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]+36=0\)

\(\left(x^2-9x+8\right)\left(x^2-9x+20\right)+36=0\)

Đặt \(a=x^2-9x+14\)ta có :

\(\left(a-6\right)\left(a+6\right)+36=0\)

\(a^2-6^2+36=0\)

\(a^2=0\)

Thay \(a=x^2-9x+14\)ta có :

\(\left(x^2-9x+14\right)^2=0\)

\(\Leftrightarrow x^2-9x+14=0\)

\(\Leftrightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}}\)

Vậy,...........

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

30 tháng 10 2020

a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)

\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)

\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)

b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)

c) \(x\left(x-3\right)+4x-12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

d) \(x^2-36=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

e) \(x^2+3x+1=2\)

\(\Leftrightarrow x^2+3x+1-2=0\)

\(\Leftrightarrow x^2+3x-1=0\)

\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)

Còn lại ........... Tự lm nất nha 

3 tháng 10 2023

1, \(x^2\) - 9 = 0

 (\(x\) - 3)(\(x\) + 3) = 0

 \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

 vậy \(x\) \(\in\) {-3; 3}

 

  

 

3 tháng 10 2023

5, 4\(x^2\) - 36 = 0

    4.(\(x^2\) - 9) = 0

       \(x^2\) - 9 = 0

       (\(x\) - 3)(\(x\) + 3) = 0

        \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-3; 3}

 

 

15 tháng 8 2018

\(1,\left(x-4\right)^2-36=0\)

\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

\(2,x^2-25-\left(x+5\right)^2\)

\(=\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)

\(=\left(x+5\right)\left(x-5-x-5\right)\)

\(=-10\left(x+5\right)\)

\(3,\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

\(5,\left(x+8\right)^2=191\)

\(\Leftrightarrow\left(x+8\right)^2-191=0\)

\(\Leftrightarrow\left(x+8-\sqrt{191}\right)\left(x+8+\sqrt{191}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{191}-8\\x=-\sqrt{191}-8\end{matrix}\right.\)

\(6,x^2+4-\left(x-2\right)^2=0\)

\(\Leftrightarrow x^2+4-x^2+4x-4=0\)

\(\Leftrightarrow4x=0\Leftrightarrow x=0\)

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)

21 tháng 3 2020
https://i.imgur.com/fBZ3FW2.jpg
4 tháng 4 2020

1) (x+1)2+2x=x(x+1)+6

⇔x2+2x+1+2x=x2+x+6

⇔x2+2x+1+2x-x2-x-6=0

⇔3x-5=0

⇔x=\(\frac{5}{3}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{5}{3}\)}

29 tháng 11 2016

a, (2x-3)^2=(x+5)^2

2x-3=x+5

2x-3-x-5=0

x-8=0

x=8

b, x^2(x-1)-4x^2+8x-4=0

x^2(x-1)-(4x^2-8x+4)=0

x^2(x-1)-4(x^2-2x+1)=0

x^2(x-1)-4(x-1)^2=0

(x-1)(x^2-4)(x-1)=0

(x-1)(x-2)(x+2)(x-1)=0

=>x-1=0=>x=1

=>x-2=0=>x=2

=>x+2=0=>x=-2

=>x-1=0=>x=1

Vậy : x=1 ;x=2 và x=-2

c, (x-4)^2-36=0

(x-4)^2-6^2=0

(x-4-6)(x-4+6)=0

(x-10)(x+2)=0

=>x-10=0=>x=10

=>x+2=0=>x=-2

Vậy : x=10 và x=-2

k đúng cho mình nhé bạn !