Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=50
100x+5050=50
100x=-5000
x=-50
\(c,\)\(\left(x-1\right)+\left(x-2\right)+....+\left(x-100\right)=50\)
\(\left(x+x+...+x\right)-\left(1+2+...+100\right)=50\)
\(100x-5050=50\)
\(100x=50+5050\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
\(a,\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=7\)
\(b,x+\left(1+2+3+...+50\right)=2000\)
\(x+\frac{\left[1+50\right]\cdot\left[\left(50-1\right)\div1+1\right]}{2}=2000\)
\(x+1275=2000\)
\(\Rightarrow x=2000-1275=725\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
a) x . (x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=0+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) (x - 1)2 = 100
<=> (x - 1)2 = 102
\(\Leftrightarrow\orbr{\begin{cases}x-1=10\\x-1=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10+1\\x=-10+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-9\end{cases}}\)
a,\(x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b,\(\left(x-1\right)^2=100\)
\(\Rightarrow\orbr{\begin{cases}x-1=10\\x-1=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-9\end{cases}}\)
c,\(x^{50}=x^2\)
\(\Rightarrow x^{50}-x^2=0\)
\(\Rightarrow x^2\left(x^{48}-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(\left(x-1\right)+\left(x-2\right)+...+\left(x-100\right)=50\)
\(x.100-\left(1+2+...+100\right)=50\)
\(x.100-\left(\left(100+1\right).100:2\right)=50\)
\(x.100-\left(101.100:2\right)=50\)
\(x.100-5050=50\)
\(x.100=50+5050\)
\(x.100=5100\)
\(x=5100:100\)
\(x=51\)
A. \(13x+14x=50\)
\(\Leftrightarrow17x=50\)
\(\Leftrightarrow x=\frac{50}{17}\)
a) 13x+14x = 50
=> x.(13+14)=50
x+27=50
x = 50-27
x=23 ( bài này ko chắc lắm )
b) (x+2)+(x+4)+...+(x+100)=3550
=> có 50 cặp như vậy
(x+x+x+...+x)+(2+4+...+100)=3550
<=>50x+2550=3550
50x=3550-2550
50x=1000
x=1000:50
x=20
c) (1-x)+(2-x)+...+(100-x)=50
=> có 100 như vậy
(1+2+3+...+100)-(x+x+x+...+x)=50
<=>5050-100x=50
100x=5050-50
100x=5000
x=5000:100
x=50
d) để mình nghĩ cách làm lại đã rồi mình sẽ trả lời lại sau
k) 5x-(1+2+3+...+30)=135
5x-465=135
5x=135+465
5x=600
x=600:5
x=120
m) \(\frac{x-165}{x}\)+546=562
\(\frac{x-165}{x}\)=562-546
\(\frac{x-165}{x}\)=16
\(\Rightarrow\frac{x-165}{x}=\frac{16}{1}\)
<=> x-165=16
x=16+165
x=181 ( ko chắc )
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
\(x+3x+3^2x+3^3x+...+3^{49}x=3^{100}-3^{50}\)
\(\Leftrightarrow x\left(1+3+3^2+3^3+...+3^{49}\right)=3^{100}-3^{50}\)
Đặt \(A=1+3+3^2+3^3+...+3^{49}\)
\(\Leftrightarrow3A=3+3^2+3^3+3^4+3^{50}\)
\(\Leftrightarrow3A-A=2A=3^{50}-1\)
\(\Leftrightarrow A=\frac{3^{50}-1}{2}\)
\(\Rightarrow\frac{x\left(3^{50}-1\right)}{2}=3^{100}-3^{50}\)
\(\Leftrightarrow x\left(3^{50}-1\right)=2.3^{100}-2.3^{50}\)
\(\Leftrightarrow x=\frac{2.3^{100}-2.3^{50}}{3^{50}-1}\)
\(x+3x+3^2x+3^3x+...+3^{49}x=3^{100}-3^{50}\)
\(\Leftrightarrow x\left(1+3+3^2+...+3^{49}\right)=3^{100}-3^{50}\)
\(\Leftrightarrow x\left(\frac{3^{50}-1}{2}\right)=3^{100}-3^{50}\)
\(\Leftrightarrow x\left(3^{50}-1\right)=3^{102}-3^{52}\)
\(\Rightarrow x=\frac{3^{102}-3^{52}}{3^{50}-1}=\frac{3^{52}\left(3^{50}-1\right)}{3^{50}-1}=3^{52}\)
(x - 1) + (x - 2) + (x - 3) + ... + (x - 100) = 50
(x + x + x + ... +x) - (1 + 2 + 3 + ... + 100) = 50
100x - 5050 = 50
100x = 50 + 5050
100x = 5100
x = 5100 : 100 = 51
(x + 1) + (x + 2 ) + (x + 3) + ... + (x - 100) = 50
x - 1 + x - 2 + x - 3 + .... + x - 100 = 50
(x + x + x + ... + x) + (1 - 2 - 3 - ... - 100) = 50
100x + (-2475) = 5750
100x = 5750 - (-2475) = 8225
x = 8225 : 100 = 82,25