Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
\(A\))\(\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(11-8x=0\)
\(\Rightarrow x=\frac{11}{8}\)
\(B\))\(\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)+2x=0\)
\(x^3-1-x^3-1+2x=0\)
\(2x-2=0\)
\(\Rightarrow x=1\)
\(A=\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(\Rightarrow x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(\Rightarrow\left(x^2+x^2-2x^2\right)+\left(-2x-6x\right)+\left(1+9+1\right)\)
\(\Rightarrow-8x+12=0\Leftrightarrow x=\frac{-11}{-8}=\frac{11}{8}\)
\(B=\left(x-1\right).\left(x^2+x-1\right)-\left(x+1\right).\left(x^2-x+1\right)+2x=0\)
\(\Rightarrow x.\left(x^2+x-1\right)-x^2-x+1-x.\left(x^2-x+1\right)-x^2+x-1+2x=0\)
\(\Rightarrow x^3+x^2-1-x^2-x+1-x^3+x^2-x-x^2+x-1+2x=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(-1+1-1\right)+\left(-x-x+x\right)+2x=0\)
\(\Rightarrow-1+x=0\Leftrightarrow x=1\)
\(C=\left(x-5\right).\left(x-5\right)+\left(2x+1\right)^2-3x^2=0\)
\(\Rightarrow x.\left(x-5\right)-5.\left(x-5\right)+\left(2x\right)^2+2.2x.1+1^2-3x^2=0\)
\(\Rightarrow x^2-5x-5x+25+4x^2+4x+1-3x^2=0\)
\(\Rightarrow\left(x^2-3x^2+4x^2\right)+\left(-5x-5x+4x\right)+26=0\)
\(\Rightarrow2x^2-6x+26=0\Leftrightarrow x=\)
\(D=\left(x-1\right)-9=0\Leftrightarrow x-1=9\Leftrightarrow x=10\)
a) \(x\left(x-1\right)-2\left(1-x\right)=0\).
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
b) \(2x\left(x-2\right)-\left(2-x\right)^2=0\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c) \(\left(x-3\right)^3+\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x-3\right)^2-1\right]=0\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=4\\x=2\end{cases}}\)
d) \(x^3=x^5\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
*x+1=0<=>x=-1
*x-2=0<=>x=2
Vậy x=-1 và x=2