Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
Ta có:
\(x^2+\dfrac{1}{x^2}=4\)\(\left(x\ne0\right)\)
\(\left(x^2+\dfrac{1}{x^2}\right)^2=16\)
\(x^4+\dfrac{2.x^2}{x^2}+\dfrac{1}{x^4}=16\)
\(x^4+\dfrac{1}{x^4}=16-2=14\)
x² + 1/x² = 4
⇒ (x² + 1/x²)² = 16
⇒ x⁴ + 2.x².1/x² + 1/x⁴ = 16
⇒ x⁴ + 1/x⁴ + 2 = 16
⇒ x⁴ + 1/x⁴ = 16 - 2
⇒ x⁴ + 1/x⁴ = 14
\(2\left(\frac{3}{2}-x\right)-\frac{1}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow3-2x-\frac{1}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow-2x+\frac{8}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{4}+\frac{8}{3}=7x+2x\)
<=> 9x = 35/12
=> x = 35/12 . 1/9 = 35/108
x=1 hoặc 0
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Rightarrow\left(x-1\right)^2\left[1-\left(x-1^2\right)\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\1-\left(x-1\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2;x=0\end{cases}}\)
_Học tốt_