K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

La -1 va 1

7 tháng 10 2016

là -1

và 1

nhé 

bn hihi

8 tháng 10 2021

a) pt <=> (2x-1)(2y+3)=7

TH1: 2x-1=7 và 2y+3=1

<=> x = 4 và y = -1

TH2: 2x - 1 = -7 và 2y + 3 = -1

<=> x = -3 và y = -2

TH3: 2x-1=1 và 2y+3=7

<=> x = 1 và y=2

TH4: 2x-1=-1 và 2y+3=-7

<=> x=0 và y=-5

 

8 tháng 10 2021

b) pt <=> (x-3)(y+4)=19

TH1: x - 3=1 và y+4=19

<=> x=4 và y=15

TH2: x-3=-1 và y+4=-19

<=> x=2 và y=-23

TH3: x-3=19 và y+4=1

<=> x=22 và y=-3

TH4: x-3=-19 và y+4=-1

<=> x=-16 và y=-5

7 tháng 11 2016

a, xy-x-2x-1=0

x(y-1-2)-1=0

x(y-3)-1=0

+x=0

+(y-3)-1=0

y-3=1

y=4 

Vậy : x=0 và y=4

b, x^2-2xy+x-2y+2=0

19 tháng 4 2019

??????????????????????????

24 tháng 3 2019

\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)

<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)

<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên

Có 2 TH

+) Trường hợp 1

\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn

+ Trương hợp 2

\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn

VÂỵ ....

4 tháng 9 2016

Ta có

\(xy+2y-3x-4=0\)

\(\Leftrightarrow y\left(x+2\right)-3x-4=0\)

\(\Leftrightarrow y\left(x+2\right)-\left(3x-6\right)=2\)

\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=2\)

\(\Leftrightarrow\left(x+2\right)\left(y+3\right)=2\)

(+) với \(\begin{cases}x+2=1\\y+3=2\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=-1\end{cases}\)

(+) với \(\begin{cases}x+2=-1\\y+3=-2\end{cases}\)\(\Rightarrow\begin{cases}x=-3\\y=-5\end{cases}\)

(+) với \(\begin{cases}x+2=2\\y+3=1\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=-2\end{cases}\)

(+) với \(\begin{cases}x+2=-2\\y+3=-1\end{cases}\)\(\Rightarrow\begin{cases}x=-4\\y=-4\end{cases}\)Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-3;-5\right);\left(0;-2\right);\left(-4;-4\right)\right\}\)
4 tháng 9 2016

\(xy+2y-3x-4=0\)

\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=-2\)

\(\Leftrightarrow\left(x+2\right)\left(3-y\right)=2\)

Tới đây phân tích 2 = 1.2 = ...

Ghép cặp và tính.

22 tháng 12 2017

Nhầm, là (18,6); (8,7); (3,9); (2,10); (0,15)

22 tháng 12 2017

xy-5x+2y=30  <=> 2y-30=5x-xy

<=> 2y-30=x(5-y)  => \(x=\frac{2y-30}{5-y}=-\frac{2y-30}{y-5}=-\frac{2y-10-20}{y-5}=-\frac{2\left(y-5\right)-20}{y-5}\)

=> \(x=-2+\frac{20}{y-5}\)

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)