K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

x= căn 3

y= căn 5

23 tháng 9 2019

Ta có : \(\frac{3x}{6}=\frac{x}{2}\)\(\frac{2y}{8}=\frac{y}{4}\)

=> \(\frac{x}{2}=\frac{y}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{4}=k\)=> \(\hept{\begin{cases}x=2k\\y=4k\end{cases}}\)

=> xy = 2k . 4k = 8k2

=> 8k2 = 6

=> k2 \(=\frac{6}{8}=\frac{3}{4}\)

=> k = \(\pm\sqrt{\frac{3}{4}}\)

Đến đây tìm được rồi

29 tháng 7 2019

1. Ta có: \(3x=8y\)=> \(\frac{x}{8}=\frac{y}{3}\)=> \(\frac{x}{8}=\frac{2y}{6}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)

Vậy x = 16 và y = 6

2. xem lại đề

3x = 8y và x - 2y = 4 . Tìm x và y

3x = 8y

\(\Rightarrow\frac{x}{8}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}=\frac{x-2y}{8-2}=\frac{4}{2}=2\)

Từ \(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{2y}{6}=2\Rightarrow2y=12\Rightarrow y=6\)

Vậy x= 16 và y = 6

 \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{5}.\frac{1}{8}=\frac{y}{6}.\frac{1}{8}\Rightarrow\frac{x}{40}=\frac{y}{48}\left(1\right)\)

\(\Leftrightarrow\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{y}{8}.\frac{1}{6}=\frac{z}{11}.\frac{1}{6}\Rightarrow\frac{y}{48}=\frac{z}{66}\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)

Áp dụng tính chát của dãy tỉ số bằng nhau ta có :

Em tự thay số vào mà tính nha

Study well 

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

12 tháng 8 2019

Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)

      \(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)

=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)

Vậy ...

12 tháng 8 2019

\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)

Ta có: 3x - 2y - z = 13

\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)

\(\Leftrightarrow-\frac{1}{2}y=13\)

\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập

Đây là phương pháp quy nhiều ẩn về 1 ẩn

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)

Do đó: x=10; y=15; z=20

b: \(\left(x,y\right)\in\left\{\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right);\left(-1;-10\right);\left(-10;-1\right);\left(-2;-5\right);\left(-5;-2\right)\right\}\)

24 tháng 7 2016

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{2y}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{3x+2y}{6+10}=\frac{15}{16}\)

\(\frac{3x}{6}=\frac{15}{16}\Rightarrow x=\frac{15}{8}\)

\(\frac{2y}{10}=\frac{15}{16}\Rightarrow y=\frac{75}{16}\)

Chúc bạn học tốt ^^

 

 

22 tháng 7 2019

a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) =>  \(\frac{x}{20}=\frac{y}{24}\) 

        \(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)

=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)

=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) =>  \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)

Vậy ...

b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)

Vậy ...

22 tháng 7 2019

Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)

Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .

b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha 

Hok tốt

9 tháng 11 2016

Đặt :

 \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=k\)

\(\hept{\begin{cases}x-4=2k\\y-6=3k\\z-8=4k\end{cases}\Leftrightarrow\hept{\begin{cases}x=2k+4\\y=3k+6\\z=4k+8\end{cases}}}\)

\(\Rightarrow3x+2y-3z=36\Leftrightarrow3\left(2k+4\right)+2\left(3k+6\right)-3\left(4k+8\right)=36\)

\(\Leftrightarrow6k+4+6k+6-12k+8=36\)

\(\Leftrightarrow6k+4+6k+6-6k.2+8=36\)

\(\Leftrightarrow6\left[k\left(4+6-8\right)\right].2=36\)

\(\Leftrightarrow6k.2.2=36\Leftrightarrow6k.2^2=36\)

\(\Leftrightarrow6k=9\)

\(\Rightarrow k=\frac{3}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.2+4\\y=\frac{3}{2}.3+6\\z=\frac{3}{2}.4+8\end{cases}\Leftrightarrow\hept{\begin{cases}x=3+4\\y=\frac{9}{2}+6\\z=6+8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}\)

Nhớ k nha ,dù mk trả lời hơi muộn 

5 tháng 10 2021

Bài 5:

Theo đề ra, ta có:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

Trường hợp 1: Với \(k=2\)

\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)

\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)

Trường hợp 2: Với \(k=-2\)

\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)

\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)

5 tháng 10 2021

Bài 4:

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)

\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)

\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)

\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)