Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=x^2+5y^2+4xy-6x-16y+2031\)
\(\Rightarrow S=x^2+4y^2+y^2+4xy-6x-12y-4y+4+1918+9\)
\(\Rightarrow S=\left(x^2+4xy+4y^2\right)-6x-12y+\left(y^2-4y+4\right)+1918+9\)
\(\Rightarrow S=\left(x+2y\right)^2-6\left(x+2y\right)+\left(y-2\right)^2+1918+9\)
\(\Rightarrow S=\left[\left(x+2y\right)^2-6\left(x+2y\right)+9\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left[\left(x+y\right)^2-2.3\left(x+2y\right)+3^2\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2+1918\)
Vì: (x+y-3)^2+(y+2)^2 > 0
=> (x+y-3)^2+(y+2)^2+1918> 1918
Dấu "=" xảy ra khi x+y-3=0;y+2=0
Ta có: y+2=0=>y=0-2=>y=-2
Thay y=-2 vào x+y-3
x+(-2)-3=0=>x-5=0=>x=0-5=>x=-5
Vậy Smin=1918 khi x=-5;y=-2
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
Từ \(x^2y+y^2x=6\) suy ra \(3x^2y+3y^2x=18\) (nhân 2 vế với 3 rồi phân tích ra)
Cộng theo vế 2 giả thiết của đề bài ta có:
\(x^3+y^3+3x^2y+3y^2x=27\)
\(\Leftrightarrow\left(x+y\right)^3=27\Leftrightarrow x+y=3\)
\(\Leftrightarrow x=3-y\) thay vào x3+y3=9 ta có:
\(\Leftrightarrow\left(3-y\right)^3+y^3=9\)\(\Leftrightarrow\left(3-y+y\right)\left[\left(3-y\right)^2-y\left(3-y\right)+y^2\right]=9\)
\(\Leftrightarrow3\left[y^2-6y+9-3y+y^2+y^2\right]=9\)
\(\Leftrightarrow3\left[3y^2-9y+9\right]=9\)\(\Leftrightarrow9\left[y^2-3y+3\right]=9\)
\(\Leftrightarrow y^2-3y+3=1\)\(\Leftrightarrow y^2-3y+2=0\)
\(\Leftrightarrow y^2-2y-y+2=0\)\(\Leftrightarrow y\left(y-2\right)-\left(y-2\right)=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=3-y=3-2=1\\y=1\Rightarrow x=3-y=3-1=2\end{cases}}\)
P/s:ý kiến tính tổng x+y có vẻ hay r`, còn ý tưởng tìm x,y có vẻ hơi "choáng" thánh có thể tìm cách khác
(x+y)3 = x3 +y3 + 3x2y + 3xy2 = 9 +3.6 = 26
x+y = \(\sqrt[3]{26}\)
Ta có : y=205x-1023
mà x=2015y-2031
\(\Rightarrow y=205.\left(2015y-2031\right)-1023\)
\(\Rightarrow y=413075y-416355-1023=413075y-417378\)
\(\Rightarrow417378=413075y-y=413074y\)
\(\Rightarrow y=\frac{417378}{413074}=1,010419441\approx1,01\)
Thay y= 1,010419441 vào x=2015-y-2031
\(\Rightarrow x=2015.1,010419441-2031=4,995172778\approx5\)
Vậy x= 5 ; y= 1,01
Chọn mình nha camr ơn, chúc bạn học tốt nha
x = 2015y - 2031 = 2015(205x - 1023) - 2031 = 413075x - 2061345 - 2031 = x + 413074x - 2063376
=> x = 2063376 : 413074 = \(4\frac{205540}{206537}\) => y = 205.\(4\frac{205540}{206537}\)- 1023 = \(1024\frac{2152}{206537}\)- 1023 = \(1\frac{2152}{206537}\)