Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
a) \(\dfrac{x}{3}=\dfrac{-10}{6}\)
\(x\times6=-10\times3\)
\(x\times6=-30\)
\(x=-5\)
b) \(\dfrac{-8}{x}=\dfrac{-9}{15}\)
\(x\times-9=15\times-8\)
\(x\times-9=-120\)
\(x=\dfrac{40}{3}\)
c) \(\dfrac{2,7}{0,9}=\dfrac{-8}{x}\)
\(x\times2,7=-8\times0,9\)
\(x\times2,7=-7,2\)
\(x=-\dfrac{8}{3}\)
d) \(\dfrac{4}{9}=\dfrac{x}{12}\)
\(x\times9=12\times4\)
\(x\times9=48\)
\(x=\dfrac{48}{9}\)
\(x=\dfrac{16}{3}\)
a) \(\left(\frac{1}{3}.x\right):\frac{2}{3}=\frac{7}{4}:\frac{2}{5}\)
\(\left(\frac{1}{3}.x\right):\frac{2}{3}=\frac{35}{8}\)
\(\Rightarrow\frac{1}{3}.x=\frac{35}{8}.\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}.x=\frac{35}{12}\)
\(\Rightarrow x=\frac{35}{12}:\frac{1}{3}\)
\(\Rightarrow x=\frac{35}{4}\)
Vậy \(x=\frac{35}{4}\)
Câu 1:
a)Áp dụng tc dãy tỉ:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)
b)Áp dụng tc dãy tỉ:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)
Câu 2:
a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=9\)
b và c đề có vấn đề
Câu 1:
a) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
+) \(\frac{x}{2}=2\Rightarrow x=4\)
+) \(\frac{y}{4}=2\Rightarrow y=8\)
+) \(\frac{z}{6}=2\Rightarrow z=12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)
Câu 4:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
2:
a: Áp dụng tính chất của DTSBN, ta được:
a/5=b/-2=(a+b)/(5-2)=12/3=4
=>a=20; b=-8
b: Áp dụng tính chất của DTSBN, ta được:
a/4=b/5=(3a-2b)/(3*4-2*5)=42/2=21
=>a=84; b=105
a: Đặt f(x)=0
=>3x-6=0
hay x=2
b: Đặt h(x)=0
=>(x-4)(x+4)=0
=>x=4 hoặc x=-4
c: Đặt g(x)=0
=>-5x+30=0
hay x=6
d: Đặt p(x)=0
=>35x-56+21=0
=>35x=35
hay x=1
Bài 7: Tìm nghiệm của các đa thức sau
a) f(x)= 3x - 6
3x - 6 = 0
= 3x = 6
= x = 6 : 3
= x = 2
Vậy 2 là nghiệm của f(x).
b) h(x)= x2 - 16
x2 - 16 = 0
= ( x - 4 ) ( x + 4 ) = 0
= x = 4 hoặc x = -4
Vậy 4 hoặc -4 là nghiệm của h(x).
c) g(x)= -5x + 30
-5x + 30 = 0
= -5x = -30
= x = -30 : -5
= x = 6
Vậy 6 là nghiệm của g(x).
d) p(x)= 7 ( 5x - 8 ) + 21
7 ( 5x - 8 ) + 21 = 0
= 35x - 56 + 21 = 0
= 35x - 35 = 0
= 35x = 35
= x = 35 : 35
= x = 1
Vậy 1 là nghiệm của p(x).
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!