K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

Answer:

\(\frac{x^2-x-2}{x^2-x+2}\)\(\inℤ\)

\(\Rightarrow\frac{x^2-x+2-4}{x^2-x+2}\inℤ\)

\(\Rightarrow1-\frac{4}{x^2-x+2}\inℤ\)

\(\Rightarrow\frac{4}{x^2-x+2}\inℤ\)

\(x\inℤ;\frac{4}{x^2-x+2}\inℤ\)

\(\Rightarrow4⋮\left(x^2-x+2\right)\RightarrowƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

undefined

25 tháng 8 2021

Ta có \(A=\dfrac{4x-3}{x+2}=\dfrac{4x+8-11}{x+2}=4-\dfrac{11}{x+2}\)

Để \(A\) nguyên thì \(11⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\\x+2=11\\x+2=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=9\\x=-13\end{matrix}\right.\)

Vậy tất cả các x thỏa ycbt là x=-1;x=-3;x=9 hoặc x=-13

Để A là số nguyên thì \(4x-3⋮x+2\)

\(\Leftrightarrow-11⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{-1;-3;9;-13\right\}\)

NV
7 tháng 9 2021

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

NV
7 tháng 9 2021

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Bài 4:

a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.

Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$

$\Leftrightarrow x<3$ 

b. 

$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$

Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.

$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$

$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Bài 5:

\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)

\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)

a: \(=\dfrac{x+1-4}{x+1}\cdot\dfrac{9-x^2+2x^2+2x-8}{-\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x-3}{-\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x^2+2x+1}{x+1}\)

\(=\dfrac{-x-1}{x+3}\)

b: Khi x=-5 thì \(M=\dfrac{-5-1}{-5+3}=\dfrac{-6}{-2}=3\)

c: Để M nguyên thì -x-1 chia hết cho x+3

=>-x-3+2 chia hết cho x+3

=>\(x+3\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{-2;-4;-5\right\}\)