Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\dfrac{4x-3}{x+2}=\dfrac{4x+8-11}{x+2}=4-\dfrac{11}{x+2}\)
Để \(A\) nguyên thì \(11⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\\x+2=11\\x+2=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=9\\x=-13\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=-1;x=-3;x=9 hoặc x=-13
Để A là số nguyên thì \(4x-3⋮x+2\)
\(\Leftrightarrow-11⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-1;-3;9;-13\right\}\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)
a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
b) Để A nguyên thì \(-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)
Để A thuộc Z thì 4 chia hết cho x + 2
=> \(x+2\in\left\{1;-1;2;-2;4;-4\right\}\)
=> \(x\in\left\{-1;-3;0;-4;2;-6\right\}\)
Bài này lp 6 học rùi bn ạ
\(\Rightarrow4chiahếtchox\)
\(x\in\left\{+-1;+-2;+-4\right\}\)
Vậy x thuộc------------------------.
Để a có thể thuộc Z.
Chúc em học tốt^^
Answer:
\(\frac{x^2-x-2}{x^2-x+2}\)\(\inℤ\)
\(\Rightarrow\frac{x^2-x+2-4}{x^2-x+2}\inℤ\)
\(\Rightarrow1-\frac{4}{x^2-x+2}\inℤ\)
\(\Rightarrow\frac{4}{x^2-x+2}\inℤ\)
\(x\inℤ;\frac{4}{x^2-x+2}\inℤ\)
\(\Rightarrow4⋮\left(x^2-x+2\right)\RightarrowƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)