K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

Ta có:

\(\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\)

Để \(\frac{x+5}{x+1}\)nguyên thì \(\frac{4}{x+1}\)nguyên

=> \(x+1\inƯ\left(4\right)\)

=> \(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=> \(x\in\left\{0;-2;1;-3;3;-5\right\}\)

30 tháng 8 2016

\(\frac{x+5}{x+1}\)= 4 

=> x để \(\frac{x+5}{x+1}\)có giá trị là số nguyên là : 

Thuộc Ước của 4 = { 1 ; 2 ; 4 ; -4 ; -2 ; - 1 } 

4 tháng 11 2018

\(A=\frac{\sqrt{x}-6}{\sqrt{x}+1}=\frac{\sqrt{x}+1-7}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Để A nguyên thì \(\frac{7}{\sqrt{x}+1}\) nguyên hay \(\sqrt{x}+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng sau:

\(\sqrt{x}+1\)-7-117
\(\sqrt{x}\)-8 (loại)-2(loại)06
\(x\)      ___ __036

Vậy ....

30 tháng 10 2017

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
12 tháng 8 2018

Để A thuộc Z

=> A^2 thuộc Z

=> x-3+4/x-3 = 1+4/x-3 thuộc z

=> x-3 thuộc ước của 4 Giải ra

19 tháng 10 2016

\(B=\frac{5}{\sqrt{x}-1}\)

Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)

Mà: Ư(5)={-1;1;-5;-5}

=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)

Ta có bảng sau:

\(\sqrt{x}-1\)1-15-5
x4036loại

Vậy x={0;4;16}

 

30 tháng 9 2021

\(A=12-\dfrac{5}{x+1}\in Z\\ \Leftrightarrow\dfrac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\\ \Leftrightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-6;-2;0;4\right\}\)

9 tháng 8 2017

ai trả lời nhanh mình k cho mình cần luôn

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên