K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

Đặt t=\(\sqrt{x}\), t guyên dương khác 1. ta có E =\(\frac{t^2}{t-1}=t+1+\frac{1}{t-1}\)

E nguyên khi t-1 là ước của 1, suy ra t-1=1 hoặc t-1=-1 tương đương t=2 hoăc t=0.

suy ra x= 4 hoặc x=0.

24 tháng 11 2019

cảm ơn bạn

15 tháng 7 2018

\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(E=\frac{x}{\sqrt{x}-1}\)

15 tháng 7 2018

b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\sqrt{x}-1>0\)  vì tử của phân số luôn \(\ge0\forall x\ge0\)

\(\Rightarrow x>1\)

kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)

vậy \(x>1\) thì \(E>1\)

11 tháng 8 2016
Không tồn tại x thuộc Z để M thuộc Z
15 tháng 6 2018

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1-\frac{4}{\sqrt{x}-3}\)

Để A thuộc Z <=> \(1-\frac{4}{\sqrt{x}-3}\)thuộc Z

                      <=> \(\frac{4}{\sqrt{x}-3}\)thuộc Z 

  mà  \(x\)thuộc Z =>\(\sqrt{x}-3\) thuộc ước của \(4\)

                            => \(\sqrt{x}-3\)thuộc ( \(1,-1,2,-2,4,-4\) )

   mà  \(\sqrt{x}\) \(>0\)=> \(\sqrt{x}\)thuộc (\(4,2,5,1,7\))

=>  \(x\)thuộc ( \(16,4,25,1,49\))

vậy.....

15 tháng 6 2018

\(1-\frac{4}{\sqrt{x}-3}\) thành \(1+\frac{4}{\sqrt{x}-3}\)nha

13 tháng 12 2016

a) Điều kiện \(\begin{cases}x\ge0\\x-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Chú ý: x\(\ge0\) nên \(\sqrt{x}+1;4\sqrt{x}+4\) luôn khác 0