Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
a: Để B nguyên thì \(-7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
b: Để A là số nguyên thì \(3x+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-2;-4;14;-8\right\}\)
Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)
\(A=12-\dfrac{5}{x+1}\in Z\\ \Leftrightarrow\dfrac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\\ \Leftrightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-6;-2;0;4\right\}\)
\(A=\dfrac{6x+5}{2x-1}=\dfrac{3\left(2x-1\right)+8}{2x-1}=3+\dfrac{8}{2x-1}\)
\(\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
2x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
x | 1 | 0 | 3/2 loại | -1/2 loại | 5/2 loại | -3/2 loại | 9/2 loại | -7/2 loại |
\(A=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Leftrightarrow A\left(\sqrt{x}+3\right)=\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\left(A-1\right)=1-3A\)
Nếu \(A-1=0\Leftrightarrow A=1\)không thỏa.
Nếu \(A\ne1\): \(\sqrt{x}=\frac{1-3A}{A-1}\ge0\Leftrightarrow\frac{1}{3}\le A< 1\)
Suy ra không tồn tại giá trị \(x\)thỏa mãn.
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Để A là số nguyên thì x+8 chia hết cho x+5
=>x+5+3 chia hết cho x+5
=>3 chia hết cho x+5
=>\(x+5\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-4;-6;-2;-8\right\}\)
CẬU CÓ THỂ GIẢI CHI TIẾT HƠN ĐK Ạ CHỨ MIK CHẢ HIỂU J :>>>