Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
Dễ thấy \(x,y,z\)và \(x+y+z\)đều khác \(0\).
Suy ra \(\hept{\begin{cases}\frac{x}{z}=-1\\\frac{y}{z}=\frac{9}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-z\\y=\frac{9}{5}z\end{cases}}\)
Thế vào phương trình \(z\left(x+y+z\right)=5\)ta được:
\(z\left(-z+\frac{9}{5}z+z\right)=5\Leftrightarrow\frac{9}{5}z^2=5\Leftrightarrow z=\pm\frac{5}{3}\).
Suy ra các nghiệm \(\left(-\frac{5}{3},3,\frac{5}{3}\right),\left(\frac{5}{3},-3,-\frac{5}{3}\right)\).
Thử lại đều thỏa mãn.
Để \(x\inℤ\) thì \(\frac{a-5}{a}\inℤ\)
Ta có: \(\frac{a-5}{a}=\frac{a}{a}-\frac{5}{a}=1-\frac{5}{a}\)
Để \(\frac{a-5}{a}\inℤ\) thì \(\frac{5}{a}\inℤ\)
\(\Rightarrow a\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Cộng ba vế trên vế theo vế ta được:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-3\\x+y+z=3\end{cases}}\)
Với \(x+y+z=-3\)
\(\Rightarrow x=\frac{5}{3}\);\(y=-3\);\(z=-\frac{5}{3}\)
Với \(x+y+z=3\)
\(\Rightarrow x=-\frac{5}{3}\);\(y=3\);\(z=\frac{5}{3}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A thuộc Z
=>\(\frac{4}{\sqrt{x}-3}\in Z\)
<=>\(\sqrt{x}-3\inƯ\left(4\right)\)
=>\(\sqrt{x}-3\in\left(-2;2;-1;1;-4;4\right)\)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1(loại) |
x | 16 | 4 | 25 | 1 | 49 |
(x - 5)x+1 - (x - 5)x+9 = 0
(x - 5)x+1 - (x - 5)x+1.(x - 5)8 = 0
(x - 5 )x+1[1 - (x - 5)8] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{x+1}=0\\1-\left(x-5\right)^8=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^8=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=4;6\end{cases}}}\)
Vậy x = { 4;5;6 }
x=4,5,6 mik ko viết dấu ngoặc nhọn được dâu