Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
b.
Tích có 100 thừa số
=> n = 100
\(\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times\left(100-100\right)\)
\(=\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times0\)
\(=0\)
2.
a.
\(135\times789789-789\times135135=1001\times\left(135\times789-789\times135\right)=1001\times0=0\)
b.
\(\left(28\times9696-96\times2828\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left[101\times\left(28\times96-96\times28\right)\right]\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left(101\times0\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\)
3.
a.
\(\left[\left(x+32\right)-17\right]\times2=42\)
\(\left(x+32\right)-17=\frac{42}{2}\)
\(\left(x+32\right)-17=21\)
\(x+32=21+17\)
\(x+32=38\)
\(x=38-32\)
\(x=6\)
b.
\(125+\left(145-x\right)=175\)
\(145-x=175-125\)
\(145-x=50\)
\(x=145-50\)
\(x=95\)
a. Vì
1/2<2/3
3/4<4/5
.........
99/100<100/101 nên M<N
b.M.N=\(\frac{1.2.3.4......100}{2.3.4.5......101}\)=\(\frac{1}{101}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2008}{2010}.\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
=> x + 1 = 2010
=> x = 2009
Ta có : \(\frac{2}{2\times3}+\frac{2}{3\times4}+....+\frac{2}{x\times\left(x+1\right)}=\frac{2008}{2010}\)
\(\Rightarrow2\times\left(\frac{1}{2\times3}+.....+\frac{1}{x\times\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}=\frac{1}{2010}\)
\(\Rightarrow x+1=2010\)
\(\Rightarrow x=2010-1=2009\)
\(B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2022.2023}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2023}=\dfrac{2021}{4046}\)
(x+2007) + ( x+1+2006) + ..... +0 =0
=> x +2007 =0
=> x =-2007
\(\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2008}{2010}\\ 2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2008}{2010}\\ \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2010}:2\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1004}{2010}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1004}{2010}\\ \dfrac{1}{x+1}=\dfrac{1}{2010}\\ \Rightarrow x+1=2010\\ \Rightarrow x=2009\)
nhìn đề bài ko hỉu j hết