Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x>3\end{cases}}\) (loại)
Vậy \(-2< x< 3\)
b) \(\left(2x-5\right)\left(x+3\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5>0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}2x-5< 0\\x+3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x>-3\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{5}{2}\\x< -3\end{cases}}\)
Vậy \(x>\frac{5}{2}\) hoặc x < -3
a)\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
<=>\(\frac{11}{12}-\frac{2}{5}-x=\frac{2}{3}\)
<=>\(-x=\frac{2}{3}-\frac{11}{12}+\frac{2}{5}\)
<=>\(-x=\frac{3}{20}\)
<=>\(x=-\frac{3}{20}\)
b)\(2x\left(x-\frac{1}{7}\right)=0\)
<=>2x=0 hoặc \(x-\frac{1}{7}=0\)
<=>x=0 hoặc x=\(\frac{1}{7}\)
c)\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
<=>\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)
<=>\(\frac{1}{4}:x=-\frac{7}{20}\)
<=>\(x=\frac{1}{4}:\left(-\frac{7}{20}\right)\)
<=>\(x=-\frac{5}{7}\)
a/ \(\left(x+2\right)\left(x-4\right)\le0\)
\(\Rightarrow\begin{cases}x+2\ge0\\x-4\le0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-4\ge0\end{cases}\)
\(\Rightarrow-2\le x\le4\)
b/ \(\frac{2x+3}{x-4}>1\Leftrightarrow\frac{2x+3}{x-4}-1>0\Leftrightarrow\frac{x+7}{x-4}>0\)
\(\Rightarrow\begin{cases}x+7>0\\x-4>0\end{cases}\) hoặc \(\begin{cases}x+7< 0\\x-4< 0\end{cases}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>4\\x< -7\end{array}\right.\)
c/ \(\frac{x+3}{x+4}>1\Rightarrow\frac{x+3}{x+4}-1>0\Rightarrow-\frac{1}{x+4}>0\Rightarrow x+4< 0\Rightarrow x< -4\)
a) bài 1
để \(x\in Z\)thì \(3x-1⋮x-1\)
mà \(x-1⋮x-1\)
\(\Rightarrow3\left(x-1\right)⋮x-1\)
\(\Rightarrow\left(3x-1\right)-\left[3x-3\right]⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
vậy \(x\in\left\{2;0;3;-1\right\}\)
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
\(a,\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=\dfrac{-3}{20}\)
Vậy ...
b, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
Vậy ...
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{-5}{7}\)
Vậy ...
a)\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
<=>\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
<=>\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
<=>\(x=-\dfrac{3}{20}\)
b)\(2x\left(x-\dfrac{1}{7}\right)=0\)
=>\(\text{2x=0 hoặc }x-\dfrac{1}{7}=0\)
=>\(x=0hoặcx=\dfrac{1}{7}\)
Vậy....
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
=>\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)
=>x=\(-\dfrac{5}{7}\)
Vậy