Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-15\right)^3=\left(2x-15\right)^5\\ \Rightarrow\left(2x-15\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}2x-15=-1\\2x-15=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
(2x - 15)⁵ = (2x - 15)³
(2x - 15)⁵ - (2x - 15)³ = 0
(2x - 15)³.[(2x - 15)² - 1] = 0
(2x - 15)³.[(2x - 15)(2x - 15) - 1] = 0
(2x - 15)³.(4x² - 30x - 30x + 225 - 1) = 0
(2x - 15)³.(4x² - 60x + 225 - 1) = 0
(2x - 15)³.(4x² - 60x + 224) = 0
4.(2x - 15)³.(x² - 15x + 56) = 0
4.(2x - 15)³.(x² - 7x - 8x + 56) = 0
4.(2x - 15)³.[(x² - 7x) - (8x - 56)] = 0
4.(2x - 15)³.[x(x - 7) - 8(x - 7)] = 0
4.(2x - 15)³.(x - 7)(x - 8) = 0
(2x - 15)³ = 0 hoặc x - 7 = 0 hoặc x - 8 = 0
*) (2x - 15)³ = 0
2x - 15 = 0
2x = 15
x = 15/2
*) x - 7 = 0
x = 7
*) x - 8 = 0
x = 8
Vậy x = 7; x = 15/2; x = 8
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
a, x10 = x2
=> x10 - x2 = 0
=> x2 (x8 - 1) = 0
=>x2 = 0 hoặc x8 - 1 = 0
=>x = 0 hoặc x8 = 1
=>x=0 hoặc x=1
b, x+3/5 = 20/x+3
=> x+3 . x+3 = 5.20
=> (x+3)2 = 100
=> (x+3)2 = 102
=> x+3 = 10
=> x = 7
c, làm tương tự giống phần a,
\(c,\left(2x-15\right)^2=\left(2x-15\right)^3\)
=> \(\left(2x-15\right)^2-\left(2x-15\right)^3=0\)
=> \(\left(2x-15\right)^2.\left[1-\left(2x-15\right)\right]=0\)
=> \(\left[{}\begin{matrix}\left(2x-15\right)^2=0\\1-\left(2x-15\right)=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-15=\sqrt{0}=0\\2x-15=1-0=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x=0+15=15\\2x=1+15=16\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15:2=\frac{15}{2}\\x=16:2=8\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{15}{2};8\right\}\)
Ta có :
\(\left(2x-15\right)^3=\left(2x-15\right)^5\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3=\left(2x-15\right)^3.\left(2x-15\right)^2\)
\(\Leftrightarrow\)\(\left(2x-15\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{16}{2}\\x=\frac{14}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy \(x=7\) hoặc \(x=8\)
Chúc bạn học tốt ~