Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n+ 8 chia hết cho n + 3
=> n+ 8 -( n+3) chia hết cho n+ 3
=> 5 chia hết cho n+3
=> n+3 thuộc ước của 5
......
đến đây cậu tự tìm n nhé
b, 2n - 5 chia hết cho n-3
=> 2n -5 - 2n + 6 chia hết cho n- 3 ( nhân n-3 với 2 )
=> 1 chia hết cho n- 3
=> n-3 thuộc ước của 1
....
c,d làm tương tự nhé
\(2n+3⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;7\right\}\)
hay \(n\in\left\{0;2\right\}\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
n = { 0 ; 1 ; 3 }
TL:
Có n+1 chia hết cho n+1
=>(n+5)-(n+1) chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 thuộc Ư(4)={1;2;4}
=>n thuộc {0;1;3}
HT