Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath
N(x) = 2x + x3 + x2 - 4x - x3
= x2 - 2x
N(x) = 0 <=> x2 - 2x = 0
<=> x(x - 2) = 0
<=> x = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = 2
Vậy nghiệm của N(x) là 0 và 2
\(N\left(x\right)=2x+x^3+x^2-4x-x^3=x^2-2x=x\left(x-2\right)\)
Để N(x) có nghiệm => x(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy x=0; x=2
\(P=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)
\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)
\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)
\(=16x^2y^2-2xy+12\)
Đặt \(t=xy\Rightarrow B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)
Vậy \(B_{min}=\frac{191}{16}\Leftrightarrow\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)
Điều kiện xác định: \(x\ge4\)
| 7 - |x - 1|| = x - 4
\(\Rightarrow\left(7-\left|x-1\right|\right)^2=\left(x-4\right)^2\\ \Leftrightarrow\left(x-1\right)^2-14\left|x-1\right|+49=x^2-8x+16\\ \Leftrightarrow x^2-2x+1-14\left|x-1\right|+49=x^2-8x+16\\ \Leftrightarrow6x+34=14\left|x-1\right|\)
\(\Leftrightarrow3x+17=7\left|x-1\right|\\ \Leftrightarrow9x^2+102x+289=49x^2-98x+49\\ \Leftrightarrow40x^2-200x-240\\ \Leftrightarrow40\left(x+1\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=6\left(t.m\right)\end{matrix}\right.\)
Vậy x = 6.
Để giải phương pháp này, chúng ta sẽ xem xét từng trường hợp của giá trị tuyệt đối.
Trường hợp 1: x-1 ≥ 0 (x ≥ 1)
Trong trường hợp này, |x-1| = x-1. Vì vậy, phương thức trở thành:
|7-(x-1)| = x-4
|8-x| = x-4
Nếu 8-x ≥ 0 (x ≤ 8) thì |8-x| = 8-x. Vì vậy, phương thức trở thành:
8-x = x-4
2x = 12
x = 6
Nếu 8-x < 0 (x > 8) thì |8-x| = -(8-x) = x-8. Vì vậy, phương thức trở thành:
x-8 = x-4
-8 = -4
Trường hợp 2: x-1 < 0 (x < 1)
Trong trường hợp này, |x-1| = -(x-1) = 1-x. Vì vậy, phương thức trở thành:
|7-(1-x)| = x-4
|6+x| = x-4
Nếu 6+x ≥ 0 (x ≥ -6) thì |6+x| = 6+x. Vì vậy, phương thức trở thành:
6+x = x-4
6 = -4
Nếu 6+x < 0 (x < -6) thì |6+x| = -(6+x) = -6-x. Vì vậy, phương thức trở thành:
-6-x = x-4
-10 = 2 lần
x = -5
Do đó, phương trình có hai nghiệm là x = 6 và x = -5.
|-x-4|=6 nên \(\orbr{\begin{cases}-x-4=6\\-x-4=-6\end{cases}}\Rightarrow\orbr{\begin{cases}-x=10\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-10\\x=2\end{cases}}\)
-x = -2 nha