K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

N(x) = 2x + x3 + x2 - 4x - x3

        = x2 - 2x 

N(x) = 0 <=> x2 - 2x = 0

              <=> x(x - 2) = 0

              <=> x = 0 hoặc x - 2 = 0

              <=> x = 0 hoặc x = 2

Vậy nghiệm của N(x) là 0 và 2 

16 tháng 6 2020

\(N\left(x\right)=2x+x^3+x^2-4x-x^3=x^2-2x=x\left(x-2\right)\)

Để N(x) có nghiệm => x(x-2)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy x=0; x=2

6 tháng 6 2019

\(2019x^2+x+2020=0\)

\(\Leftrightarrow2019\left(x^2+\frac{x}{2019}+\frac{2020}{2019}\right)=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4038}+\frac{1}{4038^2}+\frac{2020}{2019}-\frac{1}{4038^2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2+\frac{2020\cdot8076-1}{4038^2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2=-\frac{2020\cdot8076-1}{4038^2}\)(1)

Vì \(2020\cdot8076-1>0\Rightarrow\frac{2020\cdot8076-1}{4038^2}>0\)

\(\Rightarrow-\frac{2020\cdot8076-1}{4038^2}< 0\)(2)

Từ (1) và (2) suy ra đa thức vô nghiệm

\(\)

6 tháng 6 2019

Đa thức

trên vô nghiệm

hok tốt

nha

x^4-4x^3+6=0

=>\(x\simeq1,3;x\simeq3,9\)

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

12 tháng 4 2019

a,P(x)=(x\(\(^3\)\)+x\(\(^3\)\))+(-2x-x)+1=2x\(\(^3\)\)-3x +1

Sắp xếp: Như trên

Q(x)=2x\(\(^2\)\)+(-8-7)+(-4x+x)+2x\(\(^3\)\)=2x\(\(^2\)\)-15-3x+2x\(\(^3\)\)

Sắp xếp: 2x\(\(^3\)\)+2x\(\(^2\)\)-3x-15

b, Mình tính luôn kết quả nha bn. P(x)+Q(x)=4x\(\(^3\)\)+2x\(\(^2\)\)-6x-14

c,A(x)=-2x\(\(^2\)\)+16

d,B(x)= 2x\(\(^2\)\)-16

e, A(x)=-2x\(\(^2\)\)+16 =0 => -2x\(\(^2\)\)=-16 => x\(\(^2\)\)=8 => x=\(\(\sqrt{8}\)\)

d, B(x)=2x\(\(^2\)\)-16=0 => 2x\(\(^2\)\)=16 => x\(\(^2\)\)=8 => x=\(\(\sqrt{8\ }\)\)

12 tháng 4 2019

a) Thu gọn, sắp xếp.

\(P\left(x\right)=x^3-2x+x^3-x+1.\)

\(=\left(x^3+x^3\right)+\left(-2x-x\right)+1\)

\(=2x^3-3x+1\)

\(Q\left(x\right)=2x^2-8-4x+2x^3+x-7\)

\(=2x^3+2x^2+\left(-4x+x\right)+\left(-8-7\right)\)

\(=2x^3+2x^2-3x-15\)

19 tháng 4 2022

a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)

b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)

\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)

19 tháng 4 2022

mik c.ơn ạ

a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)

b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)

c: \(M\left(x\right)=-3x^4y^3+10+xy\)

30 tháng 4 2022

\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)

\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)

\(M=-2x^4y^3+7xy^2\)

\(\text{Bậc là:}7\)

\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)

\(P\left(x\right)=x^3+x+x^2+2\)

\(P\left(x\right)=x^3+x^2+x+2\)

\(\text{Bậc là:}3\)

\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)

\(M=-3x^4y^3+10+xy\)

\(\text{Bậc là:}7\)

 

6 tháng 8 2021

Mình sẽ tặng coin cho người làm đầu tiên nha

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)

mà góc đối diện với cạnh AB là \(\widehat{ACB}\)

và góc đối diện với cạnh AC là \(\widehat{ABC}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

Xét ΔABC có 

HB là hình chiếu của AB trên BC

HC là hình chiếu của AC trên BC

AB<AC

Do đó: HB<HC

c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có 

CA chung

AB=AD(gt)

Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔCBD có CB=CD(cmt)

nên ΔCBD cân tại C(Định nghĩa tam giác cân)