K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10  đk  \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3

\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10

\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10

(1 + 3 - 2)\(\sqrt{x+3}\) = 10

2\(\sqrt{x+3}\) = 10

   \(\sqrt{x+3}\) = 10: 2

   \(\sqrt{x+3}\) = 5

    \(x+3\) = 10

    \(x\) = 10 - 3

    \(x\) = 7 ( thỏa mãn) 

Vậy \(x\) = 7

 

29 tháng 10 2017

x thuộc R

=))

29 tháng 10 2017

\(\sqrt{x-3}-\sqrt{9x-27}+\sqrt{4x-12}=7\)

\(\sqrt{x-3}-3\sqrt{x-3}+2\sqrt{x-3}=7\)

\(0=7\)

1: =>|2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>2x=6 hoặc 2x=-4

=>x=3 hoặc x=-2

2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)

\(\Leftrightarrow\sqrt{x-3}=2\)

=>x-3=4

hay x=7

5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

=>x-2=0 hoặc x+2=1

=>x=2 hoặc x=-1

21 tháng 6 2018

Giải:

\(\sqrt{4x-12}+\sqrt{9x-27}-5\sqrt{x-3}+3-x=0\)

\(\Leftrightarrow2\sqrt{x-3}+3\sqrt{x-3}-5\sqrt{x-3}+3-x=0\)

\(\Leftrightarrow3-x=0\)

\(\Leftrightarrow x=3\)

Vậy ...

Mình sửa lại đề chỗ \(4\sqrt{x-3}\) thành \(5\sqrt{x-3}\) để làm ra kết quả tròn, nếu không sửa thì chắc không ra được kết quả

24 tháng 8 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+5\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-\left(x+5\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)

24 tháng 8 2020

a) 

\(\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)  

\(\sqrt{x+3}+2\cdot2\sqrt{x+3}-\frac{1}{3}\cdot3\sqrt{x+3}=8\)    

\(\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)    

\(4\sqrt{x+3}=8\)          

\(\sqrt{x+3}=2\) 

\(\orbr{\begin{cases}2\ge0\left(llđ\right)\\x+3=2^2\end{cases}}\) 

\(x+3=4\) 

\(x=1\) 

b) 

\(\orbr{\begin{cases}x^2+10x+25\ge0\\4x^2-4x+1=x^2+10x+25\end{cases}}\) 

\(\orbr{\begin{cases}\left(x+5\right)^2\ge0\left(lld\right)\\3x^2-6x-24=0\end{cases}}\) 

\(\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)        

7 tháng 5 2018

a)\(\sqrt{4x}< =10\)

<=> 4x       <= 100                   

<=>  x     <= 25

b) \(\sqrt{9x}>=3\)

<=> 9x   >= 9

<=> x  >= 1

c) \(\sqrt{4x^2+4x+1}=6\)

<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)

<=>\(\sqrt{\left(2x+1\right)^2}=6\)

<=>\(|2x+1|=6\)

<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)

<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)

d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)

<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)

<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)

<=>\(\sqrt{x-1}=6\)

<=> x - 1       =     36

<=> x           =    37

f) \(\sqrt{2x+1}=\sqrt{x-1}\)

<=> 2x + 1         =   x -1

<=> 2x - x            = -1 -1

<=>  x                 = -2

g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

<=>x2 -x  -1               = x -1

<=> x2 -x-x-1+1           = 0

<=> x2  - 2x  + 0           = 0

<=> x(x-2)                 = 0

<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

8 tháng 5 2018

thanks bạn đã giúp mình 

NV
25 tháng 7 2020

Bạn viết lại để bài giùm

Có duy nhất câu c bạn viết đúng đề (có dấu "="), còn lại tới 3 câu ko biết dâu "=" ở đâu

a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)

\(=\sqrt{x-3}+3-x\)

c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)

=>2 căn x-2=18

=>x-2=81

=>x=83

Đk:x-3\(\ge\)0

<=>x\(\le\)3

\(\sqrt{4x-12}+\sqrt{9x-27}-4\sqrt{x-3}+3-x=0\)

\(\Leftrightarrow\sqrt{4\left(x-3\right)}+\sqrt{9\left(x-3\right)}-4\sqrt{x-3}-\left(\sqrt{x-3}^2\right)=0\)

\(\Leftrightarrow2\sqrt{\left(x-3\right)}+3\sqrt{\left(x-3\right)}-4\sqrt{x-3}-\left(\sqrt{x-3}^2\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\left(2+3-4-\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\left(1-\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\1-\sqrt{x-3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)(thõa mãn ĐK)

25 tháng 10 2020

a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)

ĐK : x ≥ 0

⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)

⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)

⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)

⇔ \(-3\sqrt{x}=-5\)

⇔ \(\sqrt{x}=15\)

⇔ \(x=225\)( tm )

b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

ĐK : x ≤ 3

⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)

⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)

⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)

⇔ \(3\sqrt{3-x}=6\)

⇔ \(\sqrt{3-x}=2\)

⇔ \(3-x=4\)

⇔ \(x=-1\)( tm )

c) \(\sqrt{9x^2+12x+4}=4\)

⇔ \(\sqrt{\left(3x+2\right)^2}=4\)

⇔ \(\left|3x+2\right|=4\)

⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)

ĐK : x ≥ 1

⇔  \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\sqrt{x-1}=1\)

⇔ \(x-1=1\)

⇔ \(x=2\)( tm )