Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
\(\sqrt{x^2-4x+5}=\sqrt{\left(x^2-4x+4\right)+1}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{x^2-4x+8}=\sqrt{\left(x^2-4x+4\right)+4}=\sqrt{\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{x^2-4x+9}=\sqrt{\left(x^2-4x+4\right)+5}=\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{\left(x-2\right)^2+1}=1\\\sqrt{\left(x-2\right)^2+4}=2\\\sqrt{\left(x-2\right)^2+5}=\sqrt{5}\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
\(VT=\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\)
\(=\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\)
\(\ge1+2+\sqrt{5}=3+\sqrt{5}=VP\)
Dấu "=" xảy ra khi: \(x=2\)
Ta thấy PT xác định với mọi x thực.
Đặt \(a=\sqrt{x^2-4x+5}\ge1\).
\(PT\Leftrightarrow\sqrt{a}+\sqrt{a+3}+\sqrt{a+4}=3+\sqrt{5}\left(1\right)\).
Nhận thấy a = 1 thoả mãn.
Nếu \(a>1\Rightarrow VT_{\left(1\right)}>3+\sqrt{5}\)
Do đó a = 1 \(\Leftrightarrow x^2-4x+4=0\Leftrightarrow x=2\).
Vậy nghiệm của pt là x = 2.
Câu 1/ Ta có:
\(\left\{{}\begin{matrix}\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{x^2-4x+8}=\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{x^2-4x+9}=\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow VT\ge1+2+\sqrt{5}=VP\)
Dấu = xảy ra khi x = 2
PS: Câu còn lại thì chỉ cần phân tích cái trong căn thành số chính phương là xong.
Câu 2/ Sửa đề
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
Điều kiện: \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)
Tới đây thì đơn giản rồi
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Có: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(x-2\right)^2\ge0\forall x\\\left(x-2\right)^2\ge0\forall x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+1\ge1\\\left(x-2\right)^2+4\ge4\\\left(x-2\right)^2+5\ge5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+2\right)^2+1}\ge1\\\sqrt{\left(x+2\right)^2+4\ge2}\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x+2\right)^2+1}\ge1+\sqrt{\left(x+2\right)^2+4}\ge2+\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}=3+\sqrt{5}\)Đẳng thức xảy ra khi: \(x-2=0\Leftrightarrow x=2\)
Vậy...