Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)
a,\(\left(a\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>-2\\x+1< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+3x+3>0\end{matrix}\right.\)
Vì \(x^2+3x+3>0\forall x\in R\) (Kết hợp ĐK)
Vậy \(x\ge-1\)
b,\(\left(b\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 6\\x^2-6x+9\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x< 6\\\left\{{}\begin{matrix}x\ge6\\6x>27\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 6\\x\ge6\end{matrix}\right.\) \(\Rightarrow T=R\)
c,\(\left(c\right)\Leftrightarrow\sqrt{\left(x-1\right)^2}+3\sqrt{\left(x-5\right)^2}=1\)
\(\Leftrightarrow\left|x-1\right|+3\left|x-5\right|=1\)
Đến đây bạn xét khoảng nhé.
d, \(\left\{{}\begin{matrix}4x^2-8x+3\ge0\\9x^2-6x+1\ge0\end{matrix}\right.\) (*)
\(\left(d\right)\Leftrightarrow\sqrt{4x^2-8x+3}=\sqrt{9x^2-6x+1}\)
\(\Leftrightarrow4x^2-8x+3=9x^2-6x+1\)
\(\Leftrightarrow5x^2+2x-2=0\)
\(\Leftrightarrow x=\frac{-1\pm\sqrt{11}}{5}\) (tm)
Vậy...
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
\(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
\(=\left|3x-1\right|+\left|5-3x\right|\)
\(\ge\left|3x-1+5-3x\right|=4\)