K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Để phân số \(\frac{13}{x-15}\)nguyên 

\(\Leftrightarrow13⋮x-15\)

\(\Leftrightarrow x-15\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Rồi tự tìm x

19 tháng 5 2022

\(\dfrac{13}{x-15}\) là số nguyên khi \(x-15\) là ước của 13

\(x-15\in\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{16;14;26;2\right\}\)

19 tháng 5 2022

Để phân số 13/x-15 nguyên khi x-15 thuộc Ư(13)

=> \(x-15\in\left\{-13;-1;1;13\right\}\\ x\in\left\{14;16;28;2\right\}\\ \)

28 tháng 2 2021

x=2,14,-12.

20 tháng 6 2021

đáp án là 2,14

7 tháng 3 2021

Vì \(\frac{13}{x-1}\)thuộc Z nên 13 chia hết cho x-1

Do đó x-1 thuộc Ư(13)={1; 13}

Suy ra x thuộc {0;12}

Vậy x thuộc {0; 12}

21 tháng 2 2021

a)

\(\dfrac{13}{x-1}\in Z\\ \Rightarrow\left(x-1\right)\inƯ\left(13\right)\\ \Rightarrow\left(x-1\right)\in\left\{1;-1;13;-13\right\}\\ \Rightarrow x\in\left\{2;0;14;-12\right\}\)

b) 

\(\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\\ 1+\dfrac{5}{x-2}\in Z\\ \Rightarrow\dfrac{5}{x-2}\in Z\\ \Rightarrow\left(x-2\right)\inƯ\left(5\right)\\ \Rightarrow\left(x-2\right)\in\left\{1;-1;5;-5\right\}\\ \Rightarrow x\in\left\{3;1;7;-3\right\}\)

 

21 tháng 2 2021

tham khảo 

https://olm.vn/hoi-dap/detail/99049659825.html

a: Để A là số nguyên thì \(13⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)

hay \(x\in\left\{2;0;14;-12\right\}\)

28 tháng 8 2021

b. Ta có \(B=\dfrac{x+3}{x-2}=\dfrac{x-2+3+2}{x-2}=1+\dfrac{5}{x-2}\)

Để \(B\) nhận giá trị nguyên thì\(5⋮\left(x-2\right)\Rightarrow\left(x-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=1\\\sqrt{x}=7\\\sqrt{x}=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=9\\x=1\\x=49\end{matrix}\right.\)

Vậy tất cả các x thỏa mãn ycbt là x=9; x=1 hoặc x=49

29 tháng 6 2016

Vì \(\frac{15}{x}+4\) là số nguyên

    \(\Rightarrow15⋮x\)(hoặc \(x\inƯ\left(15\right)\)

 Vậy Ư(15)là:[1,-1,3,-3,5,-5,15,-15]

              Do đó \(x\in\)[1,-1,3,-3,5,-5,15,-15]

29 tháng 6 2016

để phân số trên là số nguyên thì (x+4) thuộc Ư(15)={1,3,5,-1,-3,-5,15,-15}

xét từng TH:

x+4=1=>x=-3

x+4=3=>x=-1

x+4=5=>x=1

x+4=15=>x=11

x+4=-1=>x=-5

x+4=-3=>x=-7

x+4=-5=>x=-9

x+4=-15=>x=-19

vậy x thuộc { -19,-9,-7,-5,-1,1,11,-3}

26 tháng 7 2017

Vì \(\frac{15}{2\cdot x+1}\)là số nguyên => 2.x + 1 = 1, 3, 5, 15

x = (1 - 1) : 2 = 0

x = (3 - 1) : 2 = 1

x = (5 - 1) : 2 = 2

x = (15 - 1) : 2 = 7

3 tháng 5 2021

a)n=5

b)X=16;-10;2;4

c)x=113;39;5;3;1;-1;-35;-109

23 tháng 11 2021

Answer:

a) \(\left(n+2\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)

\(\Rightarrow5⋮\left(n-3\right)\)

\(\Rightarrow n-3\) là ước của \(5\), ta có:

Trường hợp 1: \(n-3=-1\Rightarrow n=2\)

Trường hợp 2: \(n-3=1\Rightarrow n=4\)

Trường hợp 3: \(n-3=5\Rightarrow n=8\)

Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)

b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)

Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)

c) Ta có: \(x-2\inƯ\left(111\right)\)

\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)

\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)

d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)

Trường hợp 2: \(n+15=1\Rightarrow n=-14\)

Trường hợp 3: \(n+15=5\Rightarrow n=-10\)

Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)

Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)

e) \(3⋮n+24\)

\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)

f) Ta có:  \(x-2⋮x-2\)

\(\Rightarrow4\left(x-2\right)⋮x-2\)

\(\Rightarrow4x-8⋮x-2\)

\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)

8 tháng 2 2018

tôi chịu

22 tháng 2 2021

1) số nguyên a phải có điều kiện gì để ta có phân số ?  

     a) \(\frac{32}{a-1}\)       
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .

Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.

 b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)

Điều kiện để 5(a+6) là phân số là:

\(_{a+6\ne0\Leftrightarrow a\ne-6}\)

Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.

 2) tìm các số nguyên x để các phân số sau là số nguyên : 

 a) \(\frac{13}{x-1}\)         

Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
     b) \(\frac{x+3}{x-2}\)
Ta có :

\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)\(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.