Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{2x+2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{4}{x-1}=2+\dfrac{4}{x-1}\) \(\left(đk:x\ne1\right)\)
Để P nguyên
\(\Rightarrow\dfrac{4}{x-1}\) nguyên
\(\Rightarrow\left(x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Em tự xét các trường hợp nha
Ta có P=\(\dfrac{2x+2}{x-1}=\dfrac{-2\left(x-1\right)}{x-1}=-2\) (ĐKXĐ x khác 1}
Để P nhận giá trị nguyên thì -2 thuộc ước(-2)={-2;-1;1;2}
Để P nhận giá trị lớn nhất thì x=2
Vậy Để P nhận giá trị nguyên lớn nhất thì x=2
Chúc bạn hc tốt :33
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
Để A đạt giá trị nguyên thì \(-2x^2+x+36⋮2x+3\)
\(\Leftrightarrow-2x^2-3x+4x+6+30⋮2x+3\)
\(\Leftrightarrow-x\left(2x+3\right)+2\left(2x+3\right)+30⋮2x+3\)
\(\Leftrightarrow\left(2x+3\right)\left(-x+2\right)+30⋮2x+3\)
mà \(\left(2x+3\right)\left(-x+2\right)⋮2x+3\)
nên \(30⋮2x+3\)
\(\Leftrightarrow2x+3\inƯ\left(30\right)\)
\(\Leftrightarrow2x+3\in\left\{1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;1;-5;0;-6;2;-8;3;-9;7;-13;12;-18;27;-33\right\}\)
hay \(x\in\left\{-1;-2;\dfrac{1}{2};\dfrac{-5}{2};0;-3;1;-4;\dfrac{3}{2};\dfrac{-9}{2};\dfrac{7}{2};\dfrac{-13}{2};6;-9;\dfrac{27}{2};\dfrac{-33}{2}\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{-1;-2;\dfrac{1}{2};\dfrac{-5}{2};0;-3;1;-4;\dfrac{3}{2};\dfrac{-9}{2};\dfrac{7}{2};\dfrac{-13}{2};6;-9;\dfrac{27}{2};\dfrac{-33}{2}\right\}\)
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
P = \(\dfrac{2x+3}{x+3}\) (đk \(x\ne\) - 3; \(x\in\) Z-
P \(\in\) Z ⇔ 2\(x\) + 3 ⋮ \(x\) + 3
2\(x\) + 6 -3 ⋮ \(x\) + 3
2.(\(x\) + 3) - 3 ⋮ \(x\) + 3
3 \(⋮\) \(x\) + 3
\(x\) + 3 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(x\) + 3 | - 3 | -1 | 1 | 3 |
\(x\) | -6 | -4 | -2 | 0 |
Vì \(x\) \(\in\) Z- nên theo bảng trên ta có:
\(x\) \(\in\) {- 6; - 4; -2}
Lời giải:
$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$
Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$
Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)
Biểu thức:
\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)
Để A đạt giá trị lớn nhất:
thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất
<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất
=> \(6-x=1\Leftrightarrow x=5\)
Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
a, \(A=\dfrac{4x^2+2x^2+5x+3-9}{9x^2-4}=\dfrac{6x^2+5x-6}{9x^2-4}=\dfrac{\left(3x-2\right)\left(2x+3\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{2x+3}{3x+2}\)
b, Ta có \(6x+9⋮3x+2\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
3x+2 | 1 | -1 | 5 | -5 |
x | loại | -1 | 1 | loại |
\(P=\dfrac{2\left(x-3\right)+6}{x-3}=2+\dfrac{6}{x-3}\Rightarrow x-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)