Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sửa đề, căn x thôi nha chứ ko phải căn x+2 với căn x-3 đâu
\(ĐK:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
Ta có : \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
Để A nguyên thì \(\frac{5}{\sqrt{x}-3}\)nguyên hay \(\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
đến đây thì dễ rồi bạn tự lập bảng xét nhé ;)
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)
Để A là số nguyên thì \(\frac{7}{\sqrt{x}-5}\) là số nguyên
\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)
Auto làm nốt