Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}+\frac{x}{4}+\frac{x}{5}=\frac{x}{6}\Leftrightarrow\frac{x}{3}+\frac{x}{4}+\frac{x}{5}-\frac{x}{6}=0\)\(\Leftrightarrow x\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\right)=0\Leftrightarrow x=0\)
\(\Rightarrow x\left(\frac{4}{5}-1-\frac{3}{2}\right)+\frac{4}{3}=\frac{-7}{10}\)
\(\Rightarrow x\cdot\frac{-17}{10}=\frac{-61}{30}\)
\(\Rightarrow x=\frac{61}{51}\)
vậy_
Ta có:\(\frac{4}{5}\)x - x - \(\frac{3}{2}\)x + \(\frac{4}{3}\)=\(\frac{1}{2}\)-\(\frac{6}{5}\)
=>x.(\(\frac{4}{5}\)-1-\(\frac{3}{2}\))=\(\frac{-7}{10}\)-\(\frac{4}{3}\)
=>x.\(\frac{-17}{10}\)=\(\frac{-61}{30}\)
=>x=\(\frac{-61}{30}\):\(\frac{-17}{10}\)=\(\frac{61}{51}\)
a/ (X+1)/35+1+(x+3)/33+1 =(x+5)/31+(x+7)/29+1+1
=>(x+36)/35+(x+36)/33-(x+36)/31-(x+36)/27=0
=>(X+36)(1/35+1/33-1/31-1/29)=0
=> x+36=0(vì c=vế 2 luôn luôn khác 0)
=>x=-36
b/ CMTT câu a
trừ tung phân số cho 1 ta được x=2004
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
(x+2)/17+(x+4)/15+(x+6)/13=(x+8)/11+(x+10)/9+(x+12)/7
=>(x+2+17)/17+(x+4+15)/15+(x+6+13)/13=(x+8+11)/11+(x+10+9)/9+(x+12+7)/7
=>(x+19)/17+(x+19)/15+(x+19)/13=(x+19)/11+(x+19)/9+(x+19)/7
=>(x+19)/17+(x+19)/15+(x+19)/13-(x+19)/11-(x+19)/9-(x+19)/7=0
=>(x+19)*(1/17+1/15+1/13-1/11-1/9-1/7)=0
=>x+19=0
=>x=19
áp dụng tc tỉ lệ thức ta có :
\(\Leftrightarrow\frac{671x+2804}{3315}=\frac{239x+2462}{693}\Rightarrow\left(671x+2804\right)693=3315\left(239x+2462\right)\)
=>(671x+2804)693=693(671x+2804) (VT)
<=>693(671x+2804)=3315(239x+2462)
=>465003x+1943172=792285x+8161530
=>-327282x=621835
=>x=621835:(-327282)
=>x=-19