Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
TH1:nếu x-3<0 <=>A<0
TH2:nếu x-3>0<=>x-3 lớn nhất
Chọn TH1:x-3<0
Để A nhỏ nhất<=>x-3 lớn nhất
Mà x-3<0=>x-3=-1
=>x=2.Khi đó A=-1
Vậy x=2 thì A nhỏ nhất
\(\text{b) Để }\frac{x-25}{x+4}\inℤ\text{ thì }x-25⋮x+4\)
\(\Leftrightarrow x+4-29⋮x+4\)
\(\text{Vì }x+4⋮x+4\Leftrightarrow29⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(29\right)\)
\(\Leftrightarrow x+4\in\left\{\pm1;\pm29\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=\pm1\\x+4=\pm29\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3;-5\\x=25;-33\end{cases}}\)
\(\Leftrightarrow x\in\left\{-3;-5;25;-33\right\}\)
bài 1/
a) ta có: \(A=\frac{15}{x-1}\)
Để A là phân số \(\Rightarrow x-1\ne0\)
\(\Rightarrow x\ne1\)
b) Nếu x = 7
\(\Rightarrow A=\frac{15}{7-1}\)
\(\Rightarrow A=\frac{15}{6}\)
Nếu x = -3
\(\Rightarrow A=\frac{15}{-3-1}\)
\(\Rightarrow A=\frac{15}{-4}\)
Nếu x = 4
\(\Rightarrow A=\frac{15}{4-1}\)
\(\Rightarrow A=\frac{15}{3}=5\)
c) Ta có: \(B=5\)
\(\Leftrightarrow A=\frac{15}{x-1}=5\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài 2/
a) \(\frac{x}{3}=\frac{2}{6}\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
b) \(-\frac{x}{14}=\frac{10}{-7}\)
\(\Leftrightarrow7x=140\)
\(\Leftrightarrow x=20\)
hok tốt!!
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
Ta có:
Điều kiện \(x\in Z;x\ne-1\)
\(A=\dfrac{x+5}{x+1}=\dfrac{x+1+4}{x+1}=1+\dfrac{4}{x+1}\)
Ta có A nguyên \(\Leftrightarrow\dfrac{4}{x+1}\) nguyên \(\Leftrightarrow x+1\) thuộc ước của 4 là: \(\pm1;\pm2;\pm3;\pm4\)
Ta có: \(x+1=1\Leftrightarrow x=0\) ( thỏa mãn điều kiện )
x + 1 = -1 <=> x = -2 ( thỏa mãn điều kiện )
x + 1 = 2 => x = 1 ( thỏa mãn điều kiện )
x + 1 = 2 => x = -3 ( thỏa mãn điều kiện )
x + 1 = 4 => x = 3 ( thỏa mãn điều kiện )
x + 1 = -4 => x = -5 ( thỏa mãn điều kiện )
Vậy \(A\in\left\{0;-2;1;-3;3;-5\right\}\)