Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này là bạn cố tình paste dòng quảng cáo trên để " cú lừa " mọi người cho việc đăng linh tinh của mình
~ Hok tốt ~
thiếu đề nhé, x,y,z>0 nữa
Cần CM bđt phụ sau: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (a,b,c>0)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Theo bđt Cô-Si: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Tương tự: \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)
\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\)
Vậy ta đã CM đc bđt phụ
Đặt a=y+z;b=x+z;c=x+y
=>a+b+c=2x+2y+2z=2(x+y+z)
Ta có: \(2\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge9\)
\(=>\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2}\)
\(=>\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\ge\frac{9}{2}\)
\(=>\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\ge\frac{9}{2}\)
\(=>\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra <=>x=y=z
Vậy.........................
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Mọi ngường giúp mình với