Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để : \(\frac{2x-3}{3x-2}\) nguyên
Thì 2x - 3 chia hết cho 3x - 2
=> 3(2x - 3) chia hết cho 3x - 2
=> 6x - 9 chia hết cho 3x - 2
=> 6x - 4 - 5 chia hết cho 3x - 2
=> 2(3x - 2) - 5 chia hết cho 3x - 2
=> 5 chia hết cho 3x - 2
=> 3x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
3x - 2 | -5 | -1 | 1 | 5 |
3x | -3 | 1 | 3 | 7 |
x | -1 | 1 |
Vậy x = -1;1
em ngoan sẵn rồi anh cứ phải nói
anh cũng ngử ngoan đi love you
a.\(A=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=x-1+\frac{5}{3x+2}\)
là số nguyên khi 3x+2 là ước của 5 hay \(\orbr{\begin{cases}3x+2=\pm1\\3x+2=\pm5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
b.\(B=\frac{2x^3-9x^2+10x+4}{2x-1}=\frac{2x^3-x^2-8x^2+4x+6x-3+7}{2x-1}=x^2-4x+3+\frac{7}{2x-1}\)
là số nguyên khi 2x-1 là ước của 7 hay \(\orbr{\begin{cases}2x-1=\pm7\\2x-1=\pm1\end{cases}}\Leftrightarrow x\in\left\{-3,0,1,4\right\}\)
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
- Để B có giá trị nguyên thì 2x-5 chia het 3x-9
=> 6x-15 chia hết 3x-9
=> 6x-18+18-15 chia hết 3x-9
=> 2.[3x-9]+3 chia hết 3x-9
=> 3 chia hết cho 3x-9
=> \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\)
=> \(x\in\left\{4;2\right\}\)
- Để A có giá trị nguyên thì 3x-4 chia het 2+x
=> 3x-4 chia hết x+2
=> 3x+6-6-4 chia hết x+2
=> 3.[x+2] -6-2 chia hết x+2
=> -8 chia hết x+2
=> \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)
=> \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)
1.
\(A=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2(2x+1)+(2x+1)+3}{2x+1}=x^2+1+\frac{3}{2x+1}\)
Với $x$ nguyên, để $A$ nguyên thì $3\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{0; -1; 1; -2\right\}$
2.
\(B=\frac{3x^2-8x+1}{x-3}=\frac{3x(x-3)+x+1}{x-3}=\frac{3x(x-3)+(x-3)+4}{x-3}=3x+1+\frac{4}{x-3}\)
Với $x$ nguyên, để $B$ nguyên thì $4\vdots x-3$
$\Rightarrow x-3\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{2; 4; 5; 1; 7; -1\right\}$
a) ta có: A=\(\frac{21x+3}{7x+1}=\frac{3\left(7x+1\right)}{7x+1}=3\) với x khác -1/7
Vâỵ vs mọi gt trị của x thuộc Z (x khác -1/7) thì A mang gt nguyên
b)ta có: B=\(\frac{3x+2}{2x+3}\) => 2B=\(\frac{3\left(2x+3\right)-5}{2x+3}=3-\frac{5}{2x+3}\)
để B có giá trị nguyên <=>2B có gt nguyên <=> \(\frac{5}{2x+3}\) có gt nguyên<=> 2x+3 là các ước nguyên của 5
Ư(5)={-5 ; -1 ; 1 ; 5}
ta có bảng:
2x+3 | -5 | -1 | 1 | 5 |
x | -4 | -2 | -1 | 1 |
Vậy với x={-4 ; -2 ; -1 ; 1} thì B nguyên
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)
Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)
Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)
để \(A\in Z\)
=> 4 - 3x chia hết cho 2x + 3
=> 8 - 6x chia hết cho 2x + 3
=> 17 - 6x - 9 chia hết cho 2x + 3
17 - 3.(2x+3) chia hết cho 2x + 3
...
bn tự làm tiếp nha
cảm ơn b nhìu nha