Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 + 14 + 16 + x chia hết cho 2
12 ; 14 ; 16 chia hết cho 2 => x chia hết cho 2
12 + 14 + 16 không chia hết cho 2
12 ; 14 ; 16 chia hết cho 2 => x không chia hết cho 2 (lẻ)
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)
5.
$4x+3\vdots x-2$
$\Rightarrow 4(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
6.
$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$
7.
$3x+16\vdots x+1$
$\Rightarrow 3(x+1)+13\vdots x+1$
$\Rightarrow 13\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$
$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$
8.
$4x+69\vdots x+5$
$\Rightarrow 4(x+5)+49\vdots x+5$
$\Rightarrow 49\vdots x+5$
$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$
$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$
** Bổ sung điều kiện $x$ là số nguyên.
1. $x+9\vdots x+7$
$\Rightarrow (x+7)+2\vdots x+7$
$\Rightarrow 2\vdots x+7$
$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$
2. Làm tương tự câu 1
$\Rightarrow 9\vdots x+1$
3. Làm tương tự câu 1
$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1
$\Rightarrow 18\vdots x+2$
x + 4 chia hết cho x
4 chia hết cho x
x thuộc U(4) = {-4;-2;-1;1;2;4}
3x+ 7 chia hết cho x
7 chia hết cho x
x thuộc U(7) = {-7;-1;1;7}
8 + 6 chia hết cho x + 1
14 chia hết cho x + 1
x + 1 thuộc U(14) = {-14;-7;-2;-1;1;2;7;14}
Vậy x thuộc {-15 ; -8 ; -3 ; -2 ; 0 ; 1 ; 6 ; 13}
x + 4 chia hết cho x
4 chia hết cho x
x thuộc U(4) = {-4;-2;-1;1;2;4}
3x+ 7 chia hết cho x
7 chia hết cho x
x thuộc U(7) = {-7;-1;1;7}
8 + 6 chia hết cho x + 1
14 chia hết cho x + 1
x + 1 thuộc U(14) = {-14;-7;-2;-1;1;2;7;14}
Vậy x thuộc {-15 ; -8 ; -3 ; -2 ; 0 ; 1 ; 6 ; 13}
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
a: \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Giải
a) Ta có: x + 4 chia hết cho x.
=>4 chia hết cho x.
Vậy : x\(\in\) Ư(4)
Ư(4)= {1;2;4}
Vậy : x\(\in\) {1;2;4}
b) 3x + 7 chia hết cho x.
=> 7 chia hết cho x.
Vậy x\(\in\) Ư{7}
Ư(7) ={1;7}
Vậy ta có : x\(\in\) {1;7}
c) Ta có 27- 5x chia hết cho x.
=> 27 chia hết cho x.
Vậy: x\(\in\) Ư(27)
Ư(27)= {1;3;9;27}
Mà: x=9 thì 27- 5 x 9 không chia hết cho 9.
Và x= 27 thì 27 - 5 x 27 không chia hết cho 27.
Vậy x \(\in\){ 1;2;3}
d) Ta có: x + 6 chia hết cho x + 2
= x + 2 + 4 chia hết cho x + 2.
Mà : x+ 2 chia hết cho x + 2. Nên 4 chia hết cho x + 2.
Ư(4) = { 1;2;4}
Mà :
- x + 2 = 1 thì vô lí.( ta loại )
- x + 2 = 4 thì x = 4 - 2 = 2. Và 2 + 6 chia hết cho 2 + 2.
- x + 2 = 2 thì x =2 - 2 = 0.Và 0 + 6 chia hết cho 0 + 2.
=> x\(\in\) {2 ; 4 }
a) x thuộc Ư(4)
b) x thuộc Ư(4)
c) x thuộc Ư(2)
d) x + 2 thuộc Ư(4)