Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{10^2.5^3.15^6}{3^6.5^{10}}=\frac{\left(2.5\right)^2.\left(3.5\right)^6}{3^6.5^7}=\frac{2^2.5^2.3^6.5^6}{3^6.5^7}=2^2.5=20\)
Vậy x = 20
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
a) \(\left|x-\frac{1}{2}\right|+3=2^2\)
\(\Leftrightarrow\left|x-\frac{1}{2}\right|+3=4\)\(\Leftrightarrow\left|x-\frac{1}{2}\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=-1\\x-\frac{1}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x=-\frac{1}{2}\)hoặc \(x=\frac{3}{2}\)
b) \(3^x+3^{x+2}=10^2-2.5\)
\(\Leftrightarrow3^x+3^x.3^2=100-10\)
\(\Leftrightarrow3^x+3^x.9=90\)
\(\Leftrightarrow3^x.\left(1+9\right)=90\)
\(\Leftrightarrow3^x.10=90\)
\(\Leftrightarrow3^x=9=3^2\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
c) \(3-2x^2=\frac{5}{2}\)
\(\Leftrightarrow2x^2=3-\frac{5}{2}\)\(\Leftrightarrow2x^2=\frac{1}{2}\)
\(\Leftrightarrow x^2=\frac{1}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
Vậy \(x=-\frac{1}{2}\)hoặc \(x=\frac{1}{2}\)
\(\left|x\right|-3=4\)
\(\Rightarrow\left|x\right|=4+3\)
\(\Rightarrow\left|x\right|=7\)
\(\Rightarrow x\in\left\{-7;7\right\}\)
\(\frac{10^3+2.5^3+5^3}{55}=\frac{2^3.5^3+5^3\left(1+2\right)}{5.11}=\frac{8.5^3+5^3.3}{5.11}=\frac{5^3\left(8+3\right)}{5.11}\)
\(=\frac{5^3.11}{5.11}=\frac{5^3}{5}=5^2=25\)
Bài 1 :
\(\left|x\right|-3=4\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy...
Bài 2 :
\(\frac{10^3+2\cdot5^3+5^3}{55}\)
\(=\frac{2^3\cdot5^3+2\cdot5^3+5^3}{5\cdot11}\)
\(=\frac{5^3\cdot\left(2^3+2+1\right)}{5\cdot11}\)
\(=\frac{5^3\cdot11}{5\cdot11}\)
\(=5^2\)
Lời giải: Giải phương trình với tập xác định
Tập xác định của phương trình
\(x\in\infty-\infty\)
\(\frac{19x+67}{90}=\frac{15x+83}{56}\Rightarrow\left(19x=67\right)56=90\left(15x+83\right)\)
Kết quả : \(-13\)
kq đúng nhưng mk k biết mấy cái phương trình đó vì mk mới lớp 7
tìm x biết \(|x+1|+|x+\frac{1}{3}|+|x+\frac{1}{6}|+|x+\frac{1}{10}|+...+|x+\frac{1}{190}|=20x\) =20x
Ta có \(\left|x+1\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;...;\)\(\left|x+\frac{1}{190}\right|\ge0\) \(\forall x\)
=> \(\left|x+1\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{190}\right|\ge0\) \(\forall x\)
=> \(20x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\) => \(x+1>0,x+\frac{1}{3}>0,x+\frac{1}{6}>0,...,x+\frac{1}{190}>0\)
=> \(\left|x+1\right|=x+1,\left|x+\frac{1}{3}\right|=x+\frac{1}{3},\left|x+\frac{1}{6}\right|=x+\frac{1}{6},...,\left|x+\frac{1}{190}\right|=x+\frac{1}{190}\)
=> \(x+1+x+\frac{1}{3}+x+\frac{1}{6}+...+x+\frac{1}{190}=20x\)
=> \(19x+\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)=20x\)
=> \(x=\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)\)
Gọi \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{190}\)
=> \(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)
=> \(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{1}{2}A=1-\frac{1}{20}\)
=> \(A=\frac{19}{10}\)
Thay vào ta có
=> \(x=-\frac{19}{10}\)
\(x=\frac{10^2.5^3.15^6}{3^6.5^{10}}=\frac{\left(2.5\right)^2.5^3.\left(3.5\right)^6}{3^6.5^{10}}=\frac{2^2.5^2.5^3.3^6.5^6}{3^6.5^{10}}=\frac{2^2.5^{11}.3^6}{3^6.5^{10}}=2^2.5=4.5=20\)
Vậy x=20.