Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(\frac{x+1}{10}+\frac{x+2}{9}+\frac{x+3}{8}+\frac{x+4}{7}+\frac{x+5}{6}=-5\)
\(\left(\frac{x+1}{10}+1\right)+\left(\frac{x+2}{9}+1\right)+\left(\frac{x+3}{8}+1\right)+\left(\frac{x+4}{7}+1\right)+\left(\frac{x+5}{6}+1\right)=0\)
\(\frac{x+11}{10}+\frac{x+11}{9}+\frac{x+11}{8}+\frac{x+11}{7}+\frac{x+12}{6}=0\)
\(\left(x+11\right)\left(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}\right)=0\)
Vì : \(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}>0\)
\(\Rightarrow x+11=0\)
\(\Rightarrow x=-11\)
\(\Leftrightarrow\frac{x+4}{9}+\frac{x+11}{8}+\frac{x+16}{7}+\frac{x+19}{6}=10\)
\(\Leftrightarrow\left(\frac{x+4}{9}-1\right)+\left(\frac{x+11}{8}-2\right)+\left(\frac{x+16}{7}-3\right)+\left(\frac{x+19}{6}-4\right)=0\)
\(\Leftrightarrow\frac{x+4-9}{9}+\frac{x+11-16}{8}+\frac{x+16-21}{7}+\frac{x+19-24}{6}=0\)
\(\Leftrightarrow\frac{x-5}{9}+\frac{x-5}{8}+\frac{x-5}{7}+\frac{x-5}{6}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
V...
\(2-\frac{3}{4-\frac{5}{6-\frac{7}{8-\frac{9}{10}}}}=2-\frac{3}{4-\frac{5}{x}}\)
\(\Rightarrow\frac{3}{4-\frac{5}{6-\frac{7}{8-\frac{9}{10}}}}=\frac{3}{4-\frac{5}{x}}\)
\(\Rightarrow4-\frac{5}{6-\frac{7}{8-\frac{9}{10}}}=4-\frac{5}{x}\)
\(\Rightarrow\frac{5}{6-\frac{7}{8-\frac{9}{10}}}=\frac{5}{x}\)
\(\Rightarrow x=6-\frac{7}{8-\frac{9}{10}}\)
\(\Rightarrow x=6-\frac{7}{\frac{71}{10}}\)
\(\Rightarrow x=6-\frac{70}{71}\)
\(\Rightarrow x=\frac{356}{71}\)
mỗi hạng tử ở 2 vế cộng với 1 (có nghĩa là cộng 2 vế với 3 xong chia đều ra 3 hạng tử mỗi hạng tử cộng với 1)
Sau đó sẽ dẫn đến tất cả các hạng tử đều có chung tử số rồi nhóm tử ra ngoài là được
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
Lời giải: Giải phương trình với tập xác định
Tập xác định của phương trình
\(x\in\infty-\infty\)
\(\frac{19x+67}{90}=\frac{15x+83}{56}\Rightarrow\left(19x=67\right)56=90\left(15x+83\right)\)
Kết quả : \(-13\)
kq đúng nhưng mk k biết mấy cái phương trình đó vì mk mới lớp 7