K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)

Vậy \(x=1\)

Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)

\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)

\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)

\(\Leftrightarrow-4x+4=0\)

\(\Leftrightarrow-4x=-4\)

hay x=1

Vậy: x=1

 

26 tháng 4 2017

a) x = 2 

b) x = 2     

c) x = 2

d) x = 1.

NM
20 tháng 10 2021

ta có:

undefined

4 tháng 2 2016

phân tích rồi bấm máy nha bạn !

4 tháng 2 2016

cho 4 nữa cho tròn

1 tháng 8 2016

a) \(x=2\)

b) \(x=\frac{5}{36}\)

1 tháng 8 2016

a) \(1-\left(\frac{2x}{3}+2\right)=-1\cdot\frac{1}{3}\)

\(1-\frac{2}{3}x-2=-\frac{1}{3}\)

\(-\frac{2}{3}x-1=-\frac{1}{3}\)

\(-\frac{2}{3}x=\frac{2}{3}\)

\(x=-1\)

----------------------------------------------------------

b) \(\frac{2}{5}x-1\cdot\frac{1}{2}x+x=\frac{1}{3}\)

\(\left(\frac{2}{5}-\frac{1}{2}+1\right)x=\frac{1}{3}\)

\(\frac{9}{10}x=\frac{1}{3}\)

\(x=\frac{1}{3}:\frac{9}{10}\)

\(x=\frac{10}{27}\)