Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16.\left(1-2x\right)}\) -\(\sqrt{4.3}\) =\(\sqrt{3x}\) +\(\sqrt{9.\left(1-2x\right)}\)
(=)4\(\sqrt{1-2x}\) -2\(\sqrt{3x}\) =\(\sqrt{3x}\) +3\(\sqrt{1-2x}\)
(=)\(\sqrt{1-2x}\) -3\(\sqrt{3x}\) =0
(=)1-2x=3\(\sqrt{3x}\) (=)1-2x=9.3x(=)1-2x=27x(=)29x=1(=)x=\(\frac{1}{29}\)
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)
câu a chắc đề như zầy pk bạn???
\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)
\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)
b)đề như này đúng ko bạn??
\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)
câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này
Vậy pt trên vô nghiệm
a) \(\sqrt{x^2-9}-\sqrt{4x-12}=0\) ĐK: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = 3
b) \(\sqrt{1-x}+\sqrt{x}=1\) ĐK: \(0\le x\le1\)
\(\Leftrightarrow1-x+x+2\sqrt{x\left(1-x\right)}=1\)
\(\Leftrightarrow x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) (Nhận)
c) \(\sqrt{x+3}+\sqrt{x+8}=5\) ĐK: \(x\ge-3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+3}\ge0\\b=\sqrt{x+8}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\b^2-a^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
\(\Leftrightarrow x=1\) (Nhận)
d) \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\) ĐK: \(-\dfrac{1}{2}\le x\le0\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\)
\(\Leftrightarrow x=\dfrac{1}{29}\) (Nhận)
1) ĐK: \(x\ge0\)
PT \(\Leftrightarrow\frac{2}{3}\sqrt{12x}+\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow\frac{5}{3}\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow3\sqrt{3x}=9\) \(\Leftrightarrow x=3\left(TM\right)\)
Vậy \(x=3\)
2) ĐK: \(x\ge0\)
PT \(\Leftrightarrow7\sqrt{2x}=14\) \(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
Bài 2:Giải phương trình
a,\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\)
b.\(\sqrt{x^2-6x+9}=2x-1\)
phần a đây nhé \(a,\sqrt{4\left(2x-1\right)}-2\sqrt{9\left(2x-1\right)}+2\sqrt{16\left(2x-1\right)}=12\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow\left\{{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
a,1,A=\(\sqrt{2x^2-8x+17}\)=\(\sqrt{2\left(x^2-4x+4\right)+9}\)=\(\sqrt{2\left(x-2\right)^2+9}\)
Có \(\left(x-2\right)^2\ge0\) vs mọi x
=> \(2\left(x-2\right)^2+9\ge9\) vs mọi x
<=> \(A=\sqrt{2\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
Dấu "=" xảy ra <=> x=2
Vậy min A=3 <=> x=2
2,C=\(x-2\sqrt{x-4}+3\)( x\(\ge4\))
= \(\left(x-4\right)-2\sqrt{x-4}+1+6\)
=\(\left(\sqrt{x-4}-1\right)^2+6\)
Có \(\left(\sqrt{x-4}-1\right)^2\ge0\) với mọi \(x\ge4\)
=> C= \(\left(\sqrt{x-4}-1\right)^2+6\ge6\) với mọi x\(\ge4\)
Dấu "=" xảy ra <=> \(\sqrt{x-4}=1\) <=> \(x=5\) (t/m)
Vậy minC=6 <=>x=5
3,D=\(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)
=\(\sqrt{3\left(x^2-4x+4\right)+4}+\sqrt{x^4-8x^2+16+1}\)
=\(\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\)
Có \(\sqrt{3\left(x-2\right)^2+4}\ge\sqrt{0+4}=2\)
\(\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{0+1}=1\)
=> \(D=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge2+1\)
<=> D \(\ge3\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2=0\\x^2-4=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\x^2=4\end{matrix}\right.\) (t/m)
=> x=2
Vậy minD=3 <=>x=2
b, B=\(\sqrt{-3x^2+18x+22}=\sqrt{49-3\left(x^2-6x+9\right)}=\sqrt{49-3\left(x-3\right)^2}\)
Có \(3\left(x-3\right)^2\ge0\) vs mọi x
<=> 49\(-3\left(x-3\right)^2\le49\) vs mọi x
<=> \(\sqrt{49-3\left(x-3\right)^2}\le\sqrt{49}=7\)
<=> B\(\le7\)
Dấu "=" xảy ra <=> x=3
Vậy max B=7 <=> x=3
1) \(\sqrt{2-3x}+\sqrt{8-12x}=3\) (1) ĐKXĐ: \(x\le\dfrac{2}{3}\)
(1)\(\Leftrightarrow\sqrt{2-3x}+\sqrt{4\left(2-3x\right)}=3\)
\(\Leftrightarrow\sqrt{2-3x}+2\sqrt{2-3x}=3\)
\(\Leftrightarrow3\sqrt{2-3x}=3\)
\(\Leftrightarrow\sqrt{2-3x}=1\)
\(\Leftrightarrow2-3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\) (Thỏa mãn)
Vậy \(x=\dfrac{1}{3}\) để \(\sqrt{2-3x}+\sqrt{8-12x}=3\)
2) \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\) (2) ĐKXĐ: \(x\ge0\)
(2)\(\Leftrightarrow4\sqrt{2x}+20\sqrt{2x}-18\sqrt{2x}=-30\)
\(\Leftrightarrow6\sqrt{2x}=-30\)
\(\Leftrightarrow\sqrt{2x}=-5\)
Vì \(\sqrt{2x}\ge0\) với mọi x
\(\Rightarrow\) Không có giá trị của x để \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\)
ngầu qua^^