Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Xét đẳng thức phụ:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Thay vào -M ta có:
\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)
Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Ta có:
\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)
\(f\left(1\right)=\left(1^2+1-1\right)^{2014}+\left(1^2-1-1\right)^{2014}-2=1+1-2=0\)
Nên \(f\left(x\right)⋮\left(x-1\right)\)
\(f\left(-1\right)=\left[\left(-1\right)^2+\left(-1\right)-1\right]^{2014}.\left[\left(-1\right)^2-\left(-1\right)-1\right]^{2014}-2=1+1-2=0\)
Nên \(f\left(x\right)⋮\left(x+1\right)\)
Vậy \(f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
Ta có :
\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)
Giải (1) :
\(x^2-2014=0\)
\(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)
Giải (2) :
\(x^2-2015=0\)
\(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)
Giải (3) :
\(x^2-2016=0\)
\(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)
Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)
Chú ý : \(x^2-2014=0\)(1)
\(x^2-2015=0\)(2)
\(x^2-2016=0\)(3)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+1}+\dfrac{2}{x+1}-\dfrac{2}{x+2}+...+\dfrac{2}{x+2014}-\dfrac{2}{x+2015}\)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+2015}=\dfrac{2\left(x+2015-x\right)}{x\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
\(\Rightarrow\left(x-2014\right)\left(x-2014+x+2014\right)=0\)
\(\Rightarrow\left(x-2014\right).2x=0\)
=> x - 2014 = 0 => x = 2014
hoặc 2x = 0 => x = 0
Vậy x = 0 ; x = 2014