Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a, suy ra (x-1)x+2 - (x-1)x+6 = 0
suy ra (x-1)x+2 . 1 - (x-1)x+2. (x-1)4= 0
suy ra (x-1)x+2 . (1-(x-1)4) =0
suy ra (x-1)x+2 = 0
hoặc 1-(x-1)4=0
với (x-1)x+2 =0 suy ra x-1 = 0 suy ra x = 1
với 1- ( x-1)4 = 0 suy ra (x-1)4 = 1suy ra x-1 = 1 hoặc x-1 = -1
suy ra x= 2 hoặc x=0
vậy x = 0,1,2
b, làm tương tự
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`
Lời giải:
a.
PT $\Leftrightarrow -5x^2+15x-5+x+5x^2=x-2$
$\Leftrightarrow 16x-5=x-2$
$\Leftrightarrow 15x=3$
$\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}$
b.
PT $\Leftrightarrow -4x^2+20x+7x^2-28x-3x^2=12$
$\Leftrightarrow -8x=12$
$\Leftrightarrow x=\frac{-3}{2}$
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Lời giải:
a. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2|+|x-8|=|x-2|+|8-x|\geq |x-2+8-x|=6$
Dấu "=" xảy ra khi $(x-2)(8-x)\geq 0$
$\Leftrightarrow 2\leq x\leq 8$
b. Vì $|2x-1|\geq 0; |y-3x|\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$|2x-1|=|y-3x|=0$
$\Leftrightarrow x=\frac{1}{2}; y=\frac{3}{2}$
b) Ta có: \(\left|2x-1\right|\ge0\forall x\)
\(\left|y-3x\right|\ge0\forall x,y\)
Do đó: \(\left|2x-1\right|+\left|y-3x\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3x=\dfrac{3}{2}\end{matrix}\right.\)
a) x÷0,(7)=0,(32):2,(4)
\(x:\frac{7}{9}=\frac{32}{99}:\frac{22}{9}\)
\(x:\frac{7}{9}=\frac{16}{121}\)
\(x=\frac{16}{121}.\frac{7}{9}\)
\(x=\frac{112}{1089}\)
b)0,(17):2,(3)=x:0,(3)
\(\frac{17}{99}:\frac{7}{3}=x:\frac{1}{3}\)
\(\frac{17}{231}=x:\frac{1}{3}\)
x=\(\frac{17}{231}.\frac{1}{3}\)
\(x=\frac{17}{693}\)
\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow x-1=\orbr{\begin{cases}0\\1\end{cases}}\).Vì chỉ có : 0x+2 = 0x+6 ; 1x+2 = 1x+2
\(\Rightarrow x=\frac{1}{2}\)
\(b,\left(x+20\right)^{100}+\left|y+4\right|=0\)
Ta có : \(\left(x+20\right)^{100}\ge0;\left|y+4\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
a, => (x-1)^x+6 - (x-1)^x+2 = 0
=> (x-1)^x+2 . [(x-1)^4-1] = 0
=> x-1=0 hoặc (x-1)^4-1=0
=> x=1 hoặc x=0 hoặc x=2
b, Ta thấy : VT >= 0 = VP
Dấu "=" xảy ra <=> x+20 = 0 và y+4 = 0 <=> x=-20 và y=-4
Tk mk nha