Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aahkl============================================================================
c) \(x^2+2x=0\)
\(x\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=-2\)
b) \(3-\left|1-3x\right|=2x\)
\(\left|1-3x\right|=3-2x\)
\(\Rightarrow\orbr{\begin{cases}1-3x=3-2x\\1-3x=2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}-3x+2x=3-1\\-3x-2x=-3-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=2\\-5x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}}\)
KL:.....................................................................
a) \(\frac{3}{4}-\frac{1}{4}x=-3x\)
\(-3x+\frac{1}{4}x=\frac{3}{4}\)
\(-\frac{11}{4}x=\frac{3}{4}\)
\(x=\frac{3}{4}:\left(-\frac{11}{4}\right)\)
\(x=\frac{3}{4}.\left(-\frac{4}{11}\right)\)
\(x=-\frac{3}{11}\)
Vậy \(x=-\frac{3}{11}\)
Tham khảo nhé~
\(-2\left(x-1\right)+\left(-6\right)=10\)
\(-2\left(x-1\right)=10-\left(-6\right)\)
\(-2\left(x-1\right)=16\)
\(x-1=16:\left(-2\right)\)
\(x-1=-8\)
\(x=-8+1\)
\(x=-7\)
\(-2\left(x-1\right)+\left(-6\right)=10\)
\(-2.\left(x-1\right)=10-\left(-6\right)\)
\(-2\left(x-1\right)=16\)
\(x-1=16:\left(-2\right)\)
\(x-1=-8\)
\(x=\left(-8\right)+1\)
\(x=-7\)
a)\(x-15\%x=\frac{1}{3}\)
\(x.\left(1-15\%\right)=\frac{1}{3}\)
\(x.\frac{-280}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}:\frac{-280}{3}\)
\(x=\frac{-1}{280}\)
Vậy \(x=\frac{-1}{280}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{6}{5}=\frac{1}{2}-\frac{4}{3}\)
\(-\frac{17}{10}x+\frac{6}{5}=\frac{-5}{6}\)
\(-\frac{17}{10}x=-\frac{5}{6}-\frac{6}{5}\)
\(-\frac{17}{10}x=\frac{-61}{30}\)
\(x=\frac{-61}{30}:\frac{-17}{10}\)
\(x=\frac{61}{51}\)
Vậy \(x=\frac{61}{51}\)
a) \(\left(x-3\right)\left(6-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\6-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x< 6\end{cases}\Leftrightarrow}3< x< 6}\)
hoặc \(\hept{\begin{cases}x-3< 0\\6-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x>6\end{cases}}}\)(vô lí)
Vậy \(3< x< 6\)