Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có: P(x) + Q(x) = x3+ x2+ 2x-1
⇒ Q(x) = (x3 + x2 + 2x-1) - P(x)
= 2x3 + 4x2 - 8x - 3.
a) \(\left(x-1\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
b) \(x+1x^2+1=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)với mọi x.
=> Pt vô nghiệm.
c) \(x^2+4x=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
P/s: Check lại đề ý b nhé.
a) Ta có:(x-1)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy: S={1;-5}
b) Ta có: \(x^2+x+1=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
A(x)+B(x)-C(x)
=x^3+2x^2+3x+1-x^3+x+1-2x^2+1=0
=>4x+3=0
=>x=-3/4
\(a,\\ \left(x+\dfrac{1}{2}\right)^3=\dfrac{8}{125}=\dfrac{2^3}{5^3}\\ \left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow\left(x+\dfrac{1}{2}\right)=\dfrac{2}{5}\\ x=\dfrac{2}{5}-\dfrac{1}{2}\\ x=-\dfrac{1}{10}\)
\(b,3\left|x\right|-27=\dfrac{1}{5}\\ 3\left|x\right|=\dfrac{1}{5}+27\\ 3\left|x\right|=\dfrac{136}{5}\\ \left|x\right|=\dfrac{136}{5}:3\\ \left|x\right|=\dfrac{136}{15}\\ Vậy:x=\dfrac{136}{15}.or.x=-\dfrac{136}{15}\)
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
\(=x+x^2-x^3+x^4-x^5+2+2x-2x^2+2x^3-2x^4-\left(1+x+x^2+x^3+x^4-x-x^2-x^3-x^4-x^5\right)\\ =2+3x-x^2+x^3-x^4-x^5-1\\ =-x^5-x^4+x^3-x^2+3x+1\)
a: K(x)=0
=>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: K(x)=0
=>x(2x-5)(x+3)=0
=>x=0 hoặc 2x-5=0 hoặc x+3=0
=>x=0;x=5/2;x=-3
c: K(x)=0
=>x(x^2+4)(2x+1)=0
=>x(2x+1)=0
=>x=0 hoặc x=-1/2
d: G(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
e: G(x)=0
=>x(x^2-25)=0
=>x(x-5)(x+5)=0
=>x=0;x=5;x=-5
A)
\(x^3=-125\)
\(x=-5\)
Vậy x = -5
B)
| x | = x + 1
\(\Leftrightarrow\orbr{\begin{cases}x=x+1\\x=-\left(x+1\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=1\\x=-x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0=1\left(VN\right)\\2x=-1\end{cases}}\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Vậy x = -1/2
C) \(x^2=x\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x1 = 0 ; x2 = 1
A) x3 = -125
x = -125 : 3
x \(\approx\)-41,5
B) | x | = x + 1
\(\orbr{\begin{cases}x=x\\x=-x\end{cases}}\)
=>\(\orbr{\begin{cases}x>0\\x< 0\end{cases}}\)
C) x2 = x
x \(\varepsilon\)N
~ Hok tốt ~