K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2023

Cảm ơn nhe.^_^

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

P(x)+Q(x)+R(x) = \(9{x^4} - 3{x^3} + 5x - 1 - 2{x^3} - 5{x^2} + 3x - 8 - 2{x^4} + 4{x^2} + 2x - 10\)

\(\begin{array}{l} = (9{x^4} - 2{x^4})+( - 3{x^3} - 2{x^3})+( - 5{x^2} + 4{x^2}) +( 5x + 3x + 2x)+( - 8 - 10 - 1)\\ = 7{x^4} - 5{x^3} - {x^2} + 10x - 19\end{array}\)

P(x)-Q(x)-R(x) = \(9{x^4} - 3{x^3} + 5x - 1 + 2{x^3} + 5{x^2} - 3x + 8 + 2{x^4} - 4{x^2} - 2x + 10\)

\(\begin{array}{l} = (9{x^4} + 2{x^4})+( - 3{x^3} + 2{x^3} )+ (5{x^2} - 4{x^2}) + (5x - 3x - 2x) + (10 - 1 + 8)\\ = 11{x^4} - {x^3} + {x^2} + 17\end{array}\)

B(3)=2*3^2-4*3+3=18-12+3=9

B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

7 tháng 5 2022

b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)

\(B\left(x\right)=4x^3-2x^2+4\)

 

7 tháng 5 2022

c) \(B\left(x\right)=4x^3-2x^2+4\)

\(B\left(x\right)=2.2xx^2-2x^2+4\)

\(B\left(x\right)=2x^2\left(2x-1\right)+4\)

ta có

\(2x^2\ge0\forall x\in R\)

\(=>2x^2\left(2x-1\right)\ge0\)

mà 4 > 0

\(=>2x^2\left(2x-1\right)+4>0\)

hay B(x) > 0 

vậy B(x) ko  có nghiệm

27 tháng 7 2019

\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)

\(P\left(x\right)=3x^3-4x^2+2x+2\)

\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)

\(Q\left(x\right)=3x^3+2x+3\)

\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)

                 \(P\left(x\right)=3x^3-4x^2+2x+2\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                                                                                

\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)

             \(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)

\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                  \(P\left(x\right)=3x^3-4x^2+2x+2\)

                                                                                    

\(Q\left(x\right)-P\left(x\right)=\)       \(4x^2\)             \(+1\)

             \(\Rightarrow D\left(x\right)=4x^2+1\)

Để \(D\left(x\right)\)có nghiệm thì:

         \(D\left(x\right)=0\)

\(\Rightarrow4x^2+1=0\)

Mà \(4x^2\ge0\)

\(\Rightarrow4x^2+1\ge1\)

\(\Rightarrow D\left(x\right)\ge1\)

\(\Rightarrow D\left(x\right)>0\)

Vậy đa thức \(D\left(x\right)\)vô nghiệm

5 tháng 5 2018

Bài 7:

Cho x+5=0

 => x=-5

Cho x2-2x=0

=> x2-2x+1-1=0

=>(x-1)2-1=0

=>(x-1)2=1

=>x-1=1  thì x=2

Nếu x-1=-1 thì x=1

TK MK NHA . CHÚC BẠN HỌC GIỎI

ĐÚNG 100% NHA

5 tháng 5 2018

Thanks bn nhìu ạ ^^

a: Q(x)=3x^4+x^3+2x^2+x+1-2x^4+x^2-x+2

=x^4+x^2+3x^2+3

b: H(x)=2x^4-x^2+x-2-x^4+x^3-x^2+2

=x^4+x^3-2x^2+x

c: R(x)=2x^3+x^2+1+2x^4-x^2+x-2

=2x^4+2x^3+x-1

8 tháng 4 2020

chị học nhanh vĩa 

dạy em học với

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)

b) * Đa thức A(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -7

+ Hệ số tự do là: 9

* Đa thức B(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: 8

+ Hệ số tự do là: -7