Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(12\left(x+5\right)+2x=130\\\Leftrightarrow 12x+60+2x=130\\ \Leftrightarrow14x=70\\ \Leftrightarrow x=5\\ ----\\ 23\left(x-5\right)-12x=138\\ \Leftrightarrow23x-115-12x=138\\ \Leftrightarrow23x-12x=138+115\\ \Leftrightarrow11x=253\\ \Leftrightarrow x=\dfrac{253}{11}=23\\ ----\\ 360-12x+23\left(x-5\right)=278\\ \Leftrightarrow360-12x+23x-115=278\\ \Leftrightarrow-12x+23x=278+115-360\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=\dfrac{33}{11}=3\)
\(6\left(x+3\right)+3\left(x-5\right)=278\\ \Leftrightarrow6x+18-3x-15=278\\ \Leftrightarrow6x-3x=278+15-18\\ \Leftrightarrow3x=275\\ \Leftrightarrow x=\dfrac{275}{3}\\ ---\\ \left(7-x\right)\left(3x-90\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7-x=0\\3x-90=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=30\end{matrix}\right.\)
x : y : z = 2 : 5 : 3 => x/2 = y/5 = z/3
Đặt x/2 = y/5 = z/3 = k => x = 2k ; y = 5k ; z = 3k
x + y + z = 360 => 2k + 5k + 3k = 360 => 10k = 360 => k = 360 : 10 = 36
Do đó : x/2 = 36 => x = 36 . 2 = 72
y/5 = 36 => y = 36 . 5 = 180
z/3 = 36 => z = 36 . 3 = 108
Vậy ....
Ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\) và \(x+y+z=-360\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-360}{10}=-36\)
\(\hept{\begin{cases}\frac{x}{2}=-10\Rightarrow x=-10.2=-20\\\frac{y}{5}=-10\Rightarrow y=-10.5=-50\\\frac{z}{3}=-10\Rightarrow z=-10.3=-30\end{cases}}\)
Vậy x = -20; y = -50; z = -30
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
3x + 3x+1 + 3x+2 + 3x+3 = 360
<=> 3x + 3x.3 + 3x.32 + 3x.33 = 360
<=> 3x( 1 + 3 + 32 + 33 ) = 360
<=> 3x.40 = 360
<=> 3x = 9
<=> 3x = 32
<=> x = 2