Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.x=\frac{1+2+3+...+9}{1-2+3-4+5-6+7-8+9}+\frac{25.150-60.5+20.75}{1+2+3+...+99}\)
\(2.x=\frac{\left(9+1\right).9:2}{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}+\frac{2.3.5^2.\left(5^2-2+2.5\right)}{\left(1+99\right).99:2}\)
\(2.x=\frac{45}{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}+\frac{2.3.5^2.33}{100.99.\frac{1}{2}}\)
\(2x=\frac{45}{5}+\frac{50.99}{50.2.99.\frac{1}{2}}=9+\frac{1}{2.\frac{1}{2}}=9+1=10\)
=> 2x = 10
x = 5
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
\(B=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{19}{20}\)
\(B=\frac{1}{20}\)
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
Ta có: \(1.3.5.7....19=\frac{1}{1}.\frac{3}{1}.\frac{5}{1}.\frac{7}{1}....\frac{19}{1}\)
Mà \(1.3.5.7....19=\frac{11.12.13....20}{2.2.2....2}\)
\(\Rightarrow\frac{1}{1}.\frac{3}{1}.\frac{5}{1}.\frac{7}{1}....\frac{19}{1}=\frac{11.12.13....20}{2.2.2...2}\)
\(\Rightarrow1.3.5.7...19=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)(đpcm)
P/s: Mấy bọn ko biết giải thì câm mồm vào đừng chọn sai nha!!! (Mình không nói bạn Đức Minh Nguyễn nha)
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]
a) \(x-\frac{10}{3}=\frac{7}{15}\cdot\frac{3}{5}\) b) \(x+\frac{3}{22}=\frac{27}{121}\cdot\frac{11}{9}\)
\(\Leftrightarrow x-\frac{10}{3}=\frac{7}{25}\) \(\Leftrightarrow x+\frac{3}{22}=\frac{3}{11}\)
\(\Rightarrow x=\frac{7}{25}+\frac{10}{3}\) \(\Rightarrow x=\frac{3}{11}-\frac{3}{22}\)
\(x=\frac{271}{75}\) \(x=\frac{3}{22}\)
c) \(\frac{8}{23}.\frac{46}{24}-x=\frac{1}{3}\) d) \(1-x=\frac{49}{65}.\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}-x=\frac{1}{3}\) \(\Leftrightarrow1-x=\frac{7}{13}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{3}\) \(\Rightarrow x=1-\frac{7}{13}\)
\(x=\frac{1}{3}\) \(x=\frac{6}{13}\)
\(25\%.x-\frac{1}{5}.x=\frac{-1}{20}\)
\(=>\frac{1}{4}.x-\frac{1}{5}.x=\frac{-1}{20}\)
\(=>x.\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{-1}{20}\)
\(=>x.\frac{1}{20}=\frac{-1}{20}\)
\(=>x=\frac{-1}{20}:\frac{1}{20}\)
\(=>x=-1\)