Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x-1=32
( 32 )x-1 = 32
32x-2 = 32
⇒ 2x-2 = 2
2x = 2+2
2x = 4
x = 4 : 2
x = 2
b) 5x+2=625
5x+2= 54
⇒ x+2 = 4
x = 4-2
x = 2
c) 2x: 25= 2
2x:25 = 21
2x = 21 . 25
2x = 26
⇒ x = 6
d) 3x:27=3
3x:33 = 31
3x = 31.33
3x = 34
⇒ x = 4
a) Ta có: \(9^{x-1}=3^2\)
\(\Leftrightarrow3^{2x-2}=3^2\)
\(\Leftrightarrow2x-2=2\)
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: x=2
b) Ta có: \(5^{x+2}=625\)
\(\Leftrightarrow5^{x+2}=5^4\)
\(\Leftrightarrow x+2=4\)
hay x=2
Vậy: x=2
c) Ta có: \(2^x:2^5=2\)
\(\Leftrightarrow2^{x-5}=2^1\)
\(\Leftrightarrow x-5=1\)
hay x=6
Vậy: x=6
d) Ta có: \(3^x:27=3\)
\(\Leftrightarrow3^x:3^3=3\)
\(\Leftrightarrow3^{x-3}=3^1\)
\(\Leftrightarrow x-3=1\)
hay x=4
Vậy: x=4
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
\(\dfrac{2x}{-9}=\dfrac{10}{91}\)
\(\Leftrightarrow2x=-\dfrac{90}{91}\)
\(\Leftrightarrow x=-\dfrac{45}{91}\)
`@` `\text {Ans}`
`\downarrow`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}x\right)=0\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\\dfrac{75}{100}-\dfrac{3}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-1\cdot3\\x=\dfrac{75}{100}\div\dfrac{3}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; 1/2}.`
A) |x| = |-7|
|x| = 7
=>x=7 hoặc x=(-7)
Vậy x thuộc {7;-7}
B) |x+1|=2
=>x+1=2 hoặc x+1=(-2)
x=2-1 x=(-2)-1
x=1 x=(-3)
Vậy x thuộc {1;-3}
C) |x+1|=3
=>x+1=3 hoặc x+1=(-3)
Vì x+1<0
nên x+1=(-3)
x=(-3)-1
x=(-4)
D) x +|-2| = 0
x+2=0
x=0-2
x=(-2)
E) 4.(3x – 4) – 2 = 18
4.(3x – 4) =18+2
4.(3x – 4) =20
3x-4=20 : 4
3x-4=5
3x=5+4
3x=9
x=9 : 3
x=3
a) \(\left|x\right|=\left|-7\right|\)
\(\Rightarrow\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy ...
b) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy ...
d) \(x+\left|-2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Vậy ...
e) \(4\left(3x-4\right)-2=18\)
\(\Rightarrow4\left(3x-4\right)=20\)
\(\Rightarrow3x-4=5\)
\(\Rightarrow3x=9\Leftrightarrow x=3\)
Vậy ...
\(a,\left(2^x-3\right)^3-59=5\)
\(\Leftrightarrow\left(2^x-3\right)^3=64=4^3\)
\(\Leftrightarrow2^x-3=4\)
\(\Leftrightarrow2^x=7\)
3.(x+2)-6.(x-5)=2.(5-2x)
3x+6-6x+30=10-4x
3x-6x+4x=10-30-6
x=-26
Ta có : (x3 - 2x2) - 9x + 18 = 0
<=> x2(x - 2) - (9x - 18) = 0
<=> x2(x - 2) - 9(x - 2) = 0
=> (x2 - 9) (x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=9\\x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3;-3\\x=2\end{cases}}\)