K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

ĐKXĐ: \(x\ge0\)

Đặt \(\sqrt{x}=a\)

\(\Rightarrow a^2-2a-1=0\)

\(\Rightarrow\left(a-1\right)^2=2\)

\(\Rightarrow\orbr{\begin{cases}a-1=\sqrt{2}\\a-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1< 0\left(v\text{ô}l\text{ý}\right)\end{cases}}}\Leftrightarrow x=\left(\sqrt{2}+1\right)^2=3+2.\sqrt{2}\)Vậy \(x=3+2.\sqrt{2}\)

P/S: Không chắc lắm

28 tháng 6 2019

     \(x^4-2x^3-2x^2+3x+2=0\)

\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)

Đến đây ez r

7 tháng 7 2015

(2x-1)2-(2x+3).(2x-3)=0

<=>4x2-4x+1-(4x2-9)=0

<=>4x2-4x+1-4x2-9=0

<=>-4x-8=0

<=>-4x=8

<=>x=-2

18 tháng 7 2016

(2x - 3)2 - (x + 5)= 0

=> (2x - 3 - x - 5).(2x - 3 + x + 5) = 0

=> (x - 8).(3x + 2) = 0

=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)=> \(\orbr{\begin{cases}x=8\\3x=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=8\\x=\frac{-2}{3}\end{cases}}\)

Vậy \(x\in\left\{8;\frac{-2}{3}\right\}\)

14 tháng 8 2015

a)x+x2-x3-x4=0

<=>x(x+1)-x3(x+1)=0

<=>x(x+1)(1-x2)=0

<=>x(x+1)(x+1)(x-1)=0

<=>x(x+1)2(x-1)=0

<=>x=0

hoặc (x+1)2=0<=>x=-1

hoặc x-1=0<=>x=1

b)sửa đề 1 chút!!!

2x3+3x2+2x+3=0

<=>x2(2x+3)+(2x+3)=0

<=>(2x+3)(x2+1)=0

<=>2x+3=0(do x2+1>0 với mọi x)

<=>2x=-3

<=>x=-1,5

c)x2-x-12=0

<=>(x2-4x)+(3x-12)=0

<=>(x(x-4)+3(x-4)=0

<=>(x-4)(x+3)=0

<=>x-4=0<=>x=4

Hoặc x+3=0<=>x=-3

9 tháng 2 2021

ngu có thế cũng ko biết

28 tháng 11 2016

a)\(2x^4-6x^3+x^2+6x-3=0\)

\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)

\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)

b)\(x^3+9x^2+26x+24=0\)

\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)

\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)

 

 

 

19 tháng 10 2018

\(x^4-2x^2+8=x^4+2x^2-4x^2+8=\left(x^2-4\right)\left(x^2+2\right)=\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\)\(\left(x^4-2x^2-8\right):\left(x-2\right)=\left(x+2\right)\left(x^2+2\right)=0\)

\(\Rightarrow x=-2\)