Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 11/12 - ( 2/5 + x ) = 2/3
<=> \(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
=> x=\(\frac{1}{4}-\frac{11}{12}=-\frac{2}{3}\)
b, 2x . ( x - 1/7 ) = 0
<=>\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
vậy x={\(0;\frac{1}{7}\)}
c, 3/4 + 1/4 : x = 2/5
<=>\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
<=> \(x=\frac{1}{4}:\left(-\frac{7}{20}\right)=-\frac{5}{7}\)
vậy x=-5/7
a) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{2}{5}-x=\frac{2}{3}\)
\(\Leftrightarrow-x=\frac{2}{3}-\frac{11}{12}+\frac{2}{5}=\frac{3}{20}\)
\(\Leftrightarrow x=-\frac{3}{20}\)
b) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
c) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4x}=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow4x=\frac{-20}{7}\)
\(\Leftrightarrow x=-\frac{5}{7}\)
a)\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=-\frac{21}{3}\)
\(2x=\frac{1}{3}:\left(\frac{-21}{3}\right)\)
\(2x=-\frac{1}{21}\)
\(x=\frac{-1}{42}\)
b)\(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}3x=\frac{1}{4}\\x=-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{12}\\x=-\frac{1}{2}\end{array}\right.\)
c)\(\left(2x-5\right).\left(\frac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=0\\\frac{3}{2}x+9=0\\0,3x-12=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=5\\\frac{3}{2}x=-9\\0,3x=12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-6\\x=40\end{array}\right.\)
a) 1/4 + 1/3 : 2x = -5
=> 1/3 : 2x = -5 - 1/4
=> 1/3 : 2x = -21/4
=> 2x = 1/3 : (-21/4) = -4/63
=> x = -4/63 : 2 = -2/63
a) Ta thấy:
\(\left(x-3\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Để \(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+3\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x-3=0\\y+3=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)
Vậy \(\begin{cases}x=3\\y=-3\end{cases}\)
c) Ta thấy:
\(\left(x-12+y\right)^{200}\ge0\)
\(\left(x-4-y\right)^{200}\ge0\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\ge0\)
Để \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)
\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)
\(\Rightarrow\begin{cases}x=\left(12+4\right):2\\y=\left(12-4\right):2\end{cases}\)
\(\Rightarrow\begin{cases}x=8\\y=4\end{cases}\)
Vậy \(\begin{cases}x=8\\y=4\end{cases}\)
X2(x+2)+4(x+2)=0
=>(x2+4)(x+2)=0
=>x2+4=0 hoặc x+2=0
=>x2=-4 hoặc x=-2
Mà x2 phải ra kết quả là số dương
suy ra x=-2
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\\x=-2\end{cases}}}\)
mà \(x^2\ge0\Rightarrow x=-2\)
(x-5)4+|y2+4|=0
suy ra: (x-5)4=0; |y2+4|=0
(x-5)4=0
x-5=0
x=5
|y2+4|=0
y2+4=0
y2=-4
suy ra không tìm được y
vậy x=5
Sửa đề : a) Tìm GTNN A
a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)
\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy GTNN A = 3 khi x = 5.
b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)
\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN C = 5 khi x = -1.
\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)
\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)
Vậy GTLN D = 5 khi x = -3/2.
c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)
Ta có: \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Ta có: \(\left|4,2-2.x\right|=0,2\)
\(\Rightarrow\orbr{\begin{cases}4,2-2x=0,2\\4,2-2x=-0,2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=4,4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=2,2\end{cases}}\)
k cho mình nha cảm ơn
x 4 2 = x 12 x 5 ( x ≠ 0 )
⇒ x8 = x7.
⇒ x8 − x7 = 0
⇒ x7.(x − 1) = 0
⇒ x – 1 = 0 (vì x7 ≠ 0)
⇒ x = 1
Vậy x = 1.