Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
theo mk thì bài của bạn làm kết quả đúng nhưng bn trình bày vẫn chưa đc hợp lí, mỗi bước xuống dòng bn phải có dấu suy ra, kết luận đang còn thiếu, kết luận ko có trừ 0,25 điểm, đặt dấu bằng là sai trừ 0,25 điểm.
a) \(\left|x-3,2\right|=1,5\)
\(\Rightarrow x-3,2=\pm1,5\)
\(\Leftrightarrow x=\left\{1,7;4,7\right\}\)
b) \(\left|5x-7\right|=5x-7\)
\(\Rightarrow5x-7=\left[{}\begin{matrix}5x-7\left(x\ge0\right)\\7-5x\left(x< 0\right)\end{matrix}\right.\)
Với \(x\ge0\): \(5x-7=5x-7\)
\(\Rightarrow\) x bất kì
Với \(x< 0\): \(5x-7=7-5x\)
\(\Rightarrow5x-7-7+5x=0\)
\(\Leftrightarrow10x-14=0\)
\(\Leftrightarrow x=\frac{14}{10}\) (không thỏa mãn điều kiện)
Vậy \(x\ge0\).
c) \(\left|2x-3\right|=3-2x\)
\(\Rightarrow2x-3=\left[{}\begin{matrix}3-2x\left(x\ge0\right)\\2x-3\left(x< 0\right)\end{matrix}\right.\)
Với \(x\ge0\): \(2x-3=3-2x\)
\(\Rightarrow2x-3-3+2x=0\)
\(\Leftrightarrow4x-6=0\)
\(\Leftrightarrow x=\frac{6}{4}=\frac{3}{2}\)
Với x < 0: \(2x-3=2x-3\)
\(\Rightarrow\) x bất kì
Vậy \(x< 0\) và \(x=\frac{3}{2}\)
a) | x - 3, 2 | = 1, 5
TH1: x - 3, 2 = 1, 5
x = 1, 5 + 3, 2
x = 4, 7.
TH2: x - 3, 2 = -1, 5
x = (-1, 5) + 3, 2
x = 1, 7.
Vậy x ∈ { 4, 7 ; 1, 7}
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
Bài này có 2 cách, cách 1 là xét 3 trường hợp, cách 2 là sử dụng phương pháp đánh giá. Trong bài này cách 2 ngắn hơn thì mình sẽ làm.
Điều kiện: x \(\ge\)0
Ta có: VT = |x - 3,2| + |2x - 0,2| = |3,2 - x| + |2x - 0,2| \(\ge\) |3,2 - x + 2x - 0,2| = |x + 3| = VP
Dấu "=" xảy ra <=> (3,2 - x)(2x - 0,2) \(\ge\) 0.
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3,2-x\ge0\\2x-0,2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3,2\\x\ge0,1\end{matrix}\right.\Leftrightarrow0,1\le x\le3,2}}\\\left\{{}\begin{matrix}3,2-x\le0\\2x-0,2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3,2\\x\le0,1\end{matrix}\right.\Leftrightarrow x}\in\varphi}\end{matrix}\right.\)
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
Bài 3:
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}3x+2>0\\\dfrac{2}{3}x-5< 0\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< \dfrac{15}{2}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x+2=0\\\dfrac{2}{5}x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{3}{4}=-2\\\dfrac{2}{5}x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=6:\dfrac{2}{5}=15\end{matrix}\right.\)