Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(\left|\left|3x-1+9\right|\right|=-\left(-31\right)\)
<=> \(\left|\left|3x+8\right|\right|=31\)
<=> \(\left|3x+8\right|=31\)
<=> \(\orbr{\begin{cases}3x+8=-31\\3x+8=31\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-39\\3x=23\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-13\\x=\frac{23}{3}\end{cases}}\)
a) \(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\mid:2x-3=\frac{1}{4}\Rightarrow2x=\frac{13}{4}\Rightarrow x=\frac{13}{8}\left(TM\right)\\x< \frac{3}{2}\mid:3-2x=\frac{1}{4}\Rightarrow2x=\frac{11}{4}\Rightarrow x=\frac{11}{8}\left(TM\right)\end{cases}.}\)
b) \(\Leftrightarrow\left|x-1\right|=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}x\ge1\mid:x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\left(TM\right)\\x< 1\mid:1-x=\frac{3}{4}=>x=\frac{1}{4}\left(TM\right)\end{cases}}\)
c) \(\frac{3}{5\left(x-\frac{5}{6}\right)}-\frac{1}{2\left(\frac{3}{2}-1\right)}=-\frac{1}{4}\Leftrightarrow\frac{3}{\frac{5\left(6x-5\right)}{6}}-\frac{1}{2\cdot\frac{1}{2}}=-\frac{1}{4}\Leftrightarrow\frac{18}{5\left(6x-5\right)}=-\frac{1}{4}+1\)
\(\Leftrightarrow\frac{18}{5\left(6x-5\right)}=\frac{3}{4}\Leftrightarrow6x-5=\frac{24}{5}\Leftrightarrow6x=\frac{49}{5}\Leftrightarrow x=\frac{49}{30}\)
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\Leftrightarrow2\cdot\frac{x+1-2}{2\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow\frac{x-1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow2016x-2016=2015x+2015\Leftrightarrow x=2015+2016=4031\)
Vậy x = 4031.
=>(x+2y-3)^2016=0 hoặc |2x+3y-5|=0
x+2y=3 hoặc 2x+3y=5
<=>x=3-2y
Ta có 2x+3y=5=>6-4y+3y=5
6-y=5
y=1
Ta có x+2y=3=>x+2*1=3
x+2=3
x=1
Vậy (x;y) =(1;1)
tại sao không ai làm nhỉ?
(2x+1)(x+6) = ((X-2)(2X-3)
2x2 +12x+x +6 = 2x2 -3x-4x +6
20x =0
x =0
( 1 chữ cũng là thầy, nửa chữ cũng là thầy)
Đặt \(A=\left(x-2\right)^{2016}+\left(x-3\right)\)
\(x-2< 2\) vì nếu \(x-2\ge2\)
\(\Rightarrow x-3\ge1\)
\(\left(x-2\right)^{2016}>3\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)>3\) ( vô lý )
\(\Rightarrow x-2< 2\)
\(\Rightarrow x< 4\)
Với \(x=0\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=2^{2016}-3>3\)
Với \(x=1\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)< 0< 3\)
Với \(x=2\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=0-1< 3\)
Với \(x=3\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=1+0< 3\)
Do đó không có \(x\in N\) thỏa mãn.
Ta có : \(\left(x-2\right)^{2016}\)dương
\(\Rightarrow x-3=0\Rightarrow x=3\)
Thay x ta thử :
\(\left(3-2\right)^{2016}+\left(3-3\right)=1+0=1\)thỏa đề
Vậy \(x=3\)
|x-3|-6=2x
<=> |x-3|-2x=6
Nếu \(x-3\ge0\Leftrightarrow x\ge3\). Ta có |x-3| = x-3
|x-3|-2x=6 <=> x-3-2x=6 <=> -x - 3 = 6 <=> -x = 9 <=> x = -9 < 3 ( loại )
Nếu \(x-3<0\Leftrightarrow x<3\). Ta có |x-3| = -x+3
|x-3|-2x=6 <=> -x+3-2x=6 <=> -3x + 3 = 6 <=> -3x=3 <=> x = -1 < 3 (thỏa mãn )
Vậy x = -1
\(\left|x+3\right|+2\left|6+2x\right|+2016=4016\)
\(\left|x+3\right|+2\left|6+2x\right|=4016-2016\)
\(\left|x+3\right|+2\times2\left|3+x\right|=2000\)
\(1\left|x+3\right|+4\left|x+3\right|=2000\)
\(\left|x+3\right|\left(1+4\right)=2000\)
\(5\left|x+3\right|=2000\)
\(\left|x+3\right|=2000:5\)
\(\left|x+3\right|=400\)
Vậy x=-403 hoặc 397